Climate and vegetation controls on the surface water balance: Synthesis of evapotranspiration measured across a global network of flux towers

Water Resources Research - Tập 48 Số 6 - 2012
C. A. Williams1, Markus Reichstein2, Nina Buchmann3, Dennis Baldocchi4, Christian Beer2, Christopher R. Schwalm1, Georg Wohlfahrt5, Natalia Hasler1, Christian Bernhofer6, Thomas Foken7, Dario Papale8, Stanislaus J. Schymanski2, Kevin Schaefer9
1Graduate School of Geography, Clark University, Worcester, Massachusetts, USA
2Max Planck Institute for Biogeochemistry, Jena, Germany
3ETH Zürich, Zürich, Switzerland
4Environmental Science, Policy and Management University of California Berkeley Berkeley California USA
5Institute of Ecology, University of Innsbruck, Innsbruck, Austria
6[Institute of Hydrology and Meteorology, Technische Universitat Dresden, Dresden, Germany]
7Department of Micrometeorology, University of Bayreuth, Bayreuth, Germany
8Department for Innovation in Biological, Agro-food and Forestry, University of Tuscia,Viterbo,Italy
9National Snow and Ice Data Center, University of Colorado, Boulder, Colorado, USA

Tóm tắt

The Budyko framework elegantly reduces the complex spatial patterns of actual evapotranspiration and runoff to a general function of two variables: mean annual precipitation (MAP) and net radiation. While the methodology has first‐order skill, departures from a globally averaged curve can be significant and may be usefully attributed to additional controls such as vegetation type. This paper explores the magnitude of such departures as detected from flux tower measurements of ecosystem‐scale evapotranspiration, and investigates their attribution to site characteristics (biome, seasonal rainfall distribution, and frozen precipitation). The global synthesis (based on 167 sites with 764 tower‐years) shows smooth transition from water‐limited to energy‐limited control, broadly consistent with catchment‐scale relations and explaining 62% of the across site variation in evaporative index (the fraction of MAP consumed by evapotranspiration). Climate and vegetation types act as additional controls, combining to explain an additional 13% of the variation in evaporative index. Warm temperate winter wet sites (Mediterranean) exhibit a reduced evaporative index, 9% lower than the average value expected based on dryness index, implying elevated runoff. Seasonal hydrologic surplus explains a small but significant fraction of variance in departures of evaporative index from that expected for a given dryness index. Surprisingly, grasslands on average have a higher evaporative index than forested landscapes, with 9% more annual precipitation consumed by annual evapotranspiration compared to forests. In sum, the simple framework of supply‐ or demand‐limited evapotranspiration is supported by global FLUXNET observations but climate type and vegetation type are seen to exert sizeable additional controls.

Từ khóa


Tài liệu tham khảo

10.1029/2006GL028946

10.1016/S0065-2504(08)60018-5

10.1007/978-94-007-1363-5_5

10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2

10.1029/2006GL029006

10.1029/2008GB003233

Brown A. E., 2005, A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation, J. Hydrol., 301, 28, 10.1016/j.jhydrol.2004.12.010

10.1007/978-94-017-1497-6

Budyko M. I., 1974, Climate and Life

Calder I. R., 1990, Evaporation in the Uplands

10.1007/978-1-4612-1626-1

10.1016/S0022-1694(98)00293-5

10.5194/hess-11-983-2007

10.1016/j.jhydrol.2010.06.025

10.1016/j.jhydrol.2011.07.003

10.1016/S0309-1708(99)00019-6

10.1029/WR014i005p00731

10.1111/j.1365‐2486.2005.01011.x

Foken T., 2008, Micrometeorology

10.1890/06-0922.1

GPCC(2011) ISLSCP II Global Precipitation Climatology Centre (GPCC) Monthly Precipitation. Data set. Available online [http://daac.ornl.gov/] fromOak Ridge National Laboratory Distributed Active Archive Center Oak Ridge Tennessee U.S.A. doi:10.3334/ORNLDAAC/995.

10.1175/JHM587.1

10.1007/BF00333714

10.1016/S0065-2504(08)60119-1

Jones H. G., 1992, Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology

10.1038/nature09396

10.1007/BF00323485

10.1127/0941‐2948/2006/0130

10.1007/978-3-642-87851-0

Loveland T., 2001, Development of a global land cover characteristics database and IGBP DISCover from 1‐km AVHRR data, Int. J. Remote Sensing, 20, 1303

10.5194/hess-11-44-2007

10.1016/B978-0-12-424157-2.50007-0

10.1029/93WR01934

10.1029/94WR00586

10.1016/j.jhydrol.2008.05.021

10.1029/2009WR008233

10.1016/0022-1694(64)90022-8

10.1016/S0309-1708(01)00006-9

10.1029/2002JD002448

10.1086/424970

10.1029/2003WR002710

10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2

10.1111/j.1365-2486.2005.001002.x

Rodriguez‐Iturbe I., 2004, Ecohydrology of Water Controlled Ecosystems: Soil Moisture and Plant Dynamics

10.1029/2001GL012905

10.1046/j.1365-2745.2002.00682.x

10.1146/annurev.ecolsys.28.1.517

10.1017/CBO9780511565472

10.1111/j.1654-1103.2002.tb02066.x

10.1029/2009JG001229

10.1111/j.1365‐2486.2009.01991.x

10.1029/2011JG001674

10.5194/bg‐8‐2493‐2011

10.1016/j.agrformet.2009.11.002

10.1016/0022-1694(95)02780-7

10.1111/j.1365-2486.2006.01244.x

10.1029/2008GL036584

10.1038/ngeo950

10.1016/S0168-1923(00)00123-4

10.1111/j.1365‐2486.2006.01225.x

10.1029/2009GL041929

10.1029/2004WR003208

10.5194/bg‐6‐1341‐2009

10.1016/S0168-1923(00)00199-4

10.1016/S0168-1923(02)00109-0

10.1029/2001WR000989

10.1007/s10021‐011‐9478‐y

World Meteorological Organization, 2008, WMO No. 8

10.1029/2008WR006948

10.1029/2000WR900325