Click Chemistry, A Powerful Tool for Pharmaceutical Sciences
Tóm tắt
Từ khóa
Tài liệu tham khảo
H. C. Kolb, M. G. Finn, and K. B. Sharpless. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl. 40:2004–2021 (2001).
H. C. Kolb, and K. B. Sharpless. The growing impact of click chemistry on drug discovery. Drug Discov. Today. 8:1128–1137 (2003).
V. D. Bock, H. Hiemstra, and J. H.-V. Maarseveen. CuI-Catalyzed alkyne-azide “click” cycloadditions from a mechanistic and synthetic perspective. Eur. J. Org. Chem. 2006:51–68 (2006).
V. O. Rodionov, V. V. Fokin, and M. G. Finn. Mechanism of the ligand-free CuI-catalyzed azide-alkyne cycloaddition reaction. Angew. Chem., Int. Ed. Engl. 44:2210–2215 (2005).
V. V. Rostovtsev, L. G. Green, V. V. Fokin, and K. B. Sharpless. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem., Int. Ed. Engl. 41:2596–2599 (2002).
F. Himo, T. Lovell, R. Hilgraf, V. V. Rostovtsev, L. Noodleman, K. B. Sharpless, and V. V. Fokin. Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity intermediates. J. Am. Chem. Soc. 127:210–216 (2005).
S. Brase, C. Gil, K. Knepper, and V. Zimmermann. Organic azides: an exploding diversity of a unique class of compounds. Angew. Chem., Int. Ed., Engl. 44:5518–5240 (2005).
W. H. Zhan, H. N. Barnhill, K. Sivakumar, H. Tian, and Q. Wang. Synthesis of hemicyanine dyes for ‘click’ bioconjugation. Tetrahedron Lett. 46:1691–1695 (2005).
B. M. Mykhalichko, O. N. Temkin, and M. G. Mys’kiv. Polynuclear complexes of copper(I) halides: coordination chemistry and catalytic transformations of alkynes. Russ. Chem. Rev. 69:957–984 (2000).
R. Chinchilla, and C. Najera. The sonogashira reaction: a booming methodology in synthetic organic chemistry. Chem. Rev. 107:874–922 (2007).
W. S. Horne, C. D. Stout, and M. R. Ghadiri. A heterocyclic polymer nanotube. J. Am. Chem. Soc. 125:9372–9376 (2003).
P. L. Golas, N. V. Tsarevsky, B. S. Sumerlin, and K. Matyjaszewski. Catalyst performance in “click” coupling reactions of polymers prepared by ARTP: ligand and metal effects. Macromolecules. 39:6451–6457 (2006).
H. A. Orgueria, D. Fokas, Y. Isome, P. C.-M. Chane, and C. M. Baldino. Regioselective synthesis of [1,2,3]-triazoles catalyzes by Cu(I) generated in situ from Cu(0) nanosize activated powder and amine hydrochloride salts. Tetrahedron Lett. 46:2911–2914 (2005).
S. Chassaing, M. Kumarraja, A. S.-S. Sido, P. Pale, and J. Sommer. Click chemistry in CuI-zeolites: the huisgen [3 + 2]-cycloaddition. Org. Lett. 9:883–886 (2007).
B. K. Marcus, and W. E. Cormier. Going green with zeolites. Chem. Eng. Prog. 95:47–53 (1999).
Wittingham, S. Synthesis and characterization of the zeolite ZSM-5: a size and shape selective catalyst for xylene isomerization. http://imr.chem.binghamton.edu/labs/zeolite/zeolite.html, part of Binghamton University’s Institute for Materials Research website. http://imr.chem.binghamton.edu. Accessed August 9, 2007.
F. R. Hartley. Thermodynamic data for olefin and acetylene complexes of transition metals. Chem. Rev. 73:163–190 (1973).
L. L. Zhang, X. Chen, P. Xue, H. H. Y. Sun, I. D. Williams, K. B. Sharpless, V. V. Fokin, and G. Jia. Ruthenium-catalyzed cycloaddition of alkynes and organic azides. J. Am. Chem. Soc. 127:15998–15999 (2005).
G. C. Tron, T. Pirali, R. A. Billington, P. L. Canonico, G. Sorba, and A. A. Genazzani. Click chemistry reactions in medicinal chemistry: applications of the 1,3-dipolar cycloaddition between azides and alkynes. Med. Res. Rev. 28:278–308 (2007).
Z. Li, T. S. Seo, and J. Ju. 1,3-Dipolar cycloaddition of azides with electron-deficient alkynes under mild condition in water. Tetrahedron Lett. 45:3143–3146 (2004).
N. J. Agard, J. A. Prescher, and C. B. Bertozzi. A strain-promoted [3+2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126:15046–15047 (2004).
G. Wittig, and A. Krebs. On the existence of low-membered cycloalkynes. I. Chem. Ber. 94:3260–3275 (1961).
J. M. Baskin, J. A. Prescher, S. T. Laughlin, N. J. Agard, P. V. Chang, I. A. Miller, A. Lo, J. A. Codelli, and C. R. Bertozzi. Copper-free click chemistry for dynamic in vivo imaging. Proc. Natl. Acad. Sci. U.S.A. 104:16793–16797 (2007).
L. Weber. In vitro combinatorial chemistry to create drug candidates. Drug Discov. Today: Tech. 1:261–267 (2004).
K. B. Sharpless, and R. Manetsch. In situ click chemistry: a powerful means for lead discovery. Exp. Opin. Drug Discov. 1:525–538 (2006).
S. Roper, and H. C. Kolb. Click chemistry for drug discovery. Meth. Princpl. Med. Chem. 34:313–339 (2006).
Y. Matsumura, and H. Maeda. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46:6387–6392 (1986).
D. Wang, S. C. Miller, X. M. Liu, B. Anderson, X. S. Wang, and S. R. Goldring. Novel dexamethasone-HPMA copolymer conjugate and its potential application in treatment of rheumatoid arthritis. Arthritis Res. Ther. 9:R2 (2007).
J. Kopeček, P. Kopečková, T. Minko, Z. R. Lu, and C. M. Peterson. Water soluble polymers in tumor targeted delivery. J. Controlled Release. 74:147–158 (2001).
T. G. Park, J. H. Jeong, and S. W. Kim. Current status of polymeric gene delivery systems. Adv. Drug Delivery Rev. 58:467–486 (2006).
M. J. Roberts, M. D. Bentley, and J. M. Harris. Chemistry for peptide and protein PEGylation. Adv. Drug Delivery Rev. 54:459–476 (2002).
F. M. Veronese, and J. M. Harris. Peptide and protein PEGylation III: advances in chemistry and clinical applications. Adv. Drug Delivery Rev. 60:1–2 (2008).
Y. Kakizawa, and K. Kataoka. Block copolymer micelles for delivery of gene and related compounds. Adv. Drug Delivery Rev. 54:203–222 (2002).
R. K. O’Reilly, C. J. Hawker, and K. L. Wooley. Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. Chem. Soc. Rev. 35:1068–1083 (2006).
K. Letchford, and H. Burt. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur. J. Pharm. Biopharm. 65:259–269 (2007).
E. Franta, and P. F. Rempp. The block copolymer bag of tricks. Chemtech. 26:24–28 (1996).
W. Van Camp, V. Germonpre, L. Mespouille, P. Dubois, E. J. Goethals, and F. E. Du Prez. New poly(acrylic acid) containing segmented copolymer structures by combination of “click” chemistry and atom transfer radical polymerization. React. Functl. Polym. 67:1168–1180 (2007).
J. A. Opsteen, and J. C. M. Van Hest. Modular synthesis of ABC type block copolymers by “click” chemistry. J. Polym. Sci., Part A: Polym. Chem. 45:2913–2924 (2007).
D. Quemener, T. P. Davis, C. Barner-Kowollik, and M. H. Stenzel. RAFT and click chemistry: a versatile approach to well-defined block copolymers. Chem. Commun. 48:5051–5053 (2006).
S. R. S. Ting, A. M. Granville, D. Quemener, T. P. Davis, M. H. Stenzel, and C. Barner-Kowollik. RAFT chemistry and Huisgen 1,3-dipolar cycloaddition: a route to block copolymers of vinyl acetate and 6-O-methacryloyl mannose. Aust. J. Chem. 60:405–409 (2007).
W. Agut, D. Taton, and S. Lecommandoux. A versatile synthetic approach to polypeptide based rod-coil block copolymers by click chemistry. Macromolecules. 40:5653–5661 (2007).
G. Deng, D. Ma, and Z. Xu. Synthesis of ABC-type miktoarm star polymers by “click” chemistry, ATRP and ROP. Eur. Polym. J. 43:1179–1187 (2007).
O. Altintas, G. Hizal, and U. Tunca. ABC-type hetero-arm star terpolymers through “Click” chemistry. J. Polym. Sci., Part A: Polym. Chem. 44:5699–5707 (2006).
S. Fleischmann, H. Komber, D. Appelhans, and B. I. Voit. Synthesis of functionalized NMP initiators for click chemistry: a versatile method for the preparation of functionalized polymers and block copolymers. Macromol. Chem. Phys. 208:1050–1060 (2007).
K. Kataoka, A. Harada, and Y. Nagasaki. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Delivery. Rev. 47:113–131 (2001).
A. Mitra, A. Nan, B. R. Line, and H. Ghandehari. Nanocarriers for nuclear imaging and radiotherapy of cancer. Curr. Pharm. Des. 12:4729–4749 (2006).
F. Henselwood, and G. Liu. Water-soluble nanospheres of poly(2-cinnamoylethyl methacrylate)-block-poly(acrylic acid). Macromolecules. 30:488–493 (1997).
B. Loppinet, R. Sigel, A. Larsen, G. Fytas, D. Vlassopoulos, and G. Liu. Structure and dynamics in dense suspensions of micellar nanocolloids. Langmuir. 16:6480–6484 (2000).
R. K. O’Reilly, M. J. Joralemon, C. J. Hawker, and K. L. Wooley. Preparation of orthogonally-functionalized core click cross-linked nanoparticles. New J. Chem. 31:718–724 (2007).
R. K. O’Reilly, M. J. Joralemon, K. L. Wooley, and C. J. Hawker. Functionalization of micelles and shell cross-linked nanoparticles using click chemistry. Chem. Mater. 17:5976–5988 (2005).
F. Kratz, K. Abu Ajaj, and A. Warnecke. Anticancer carrier-linked prodrugs in clinical trials. Expert. Opin. Investig. Drugs. 16:1037–1058 (2007).
R. Duncan. Designing polymer conjugates as lysosomotropic nanomedicines. Biochem. Soc. Trans. 35:56–60 (2007).
K. S. Albain, C. P. Belani, P. Bonomi, K. J. O’Byrne, J. H. Schiller, and M. Socinski. PIONEER: a phase III randomized trial of paclitaxel poliglumex versus paclitaxel in chemotherapy-naive women with advanced-stage non-small-cell lung cancer and performance status of 2. Clin. Lung. Cancer. 7:417–419 (2006).
S. A. Shaffer, C. Baker-Lee, J. Kennedy, M. S. Lai, P. de Vries, K. Buhler, and J. W. Singer. In vitro and in vivo metabolism of paclitaxel poliglumex: identification of metabolites and active proteases. Cancer Chemother. Pharmacol. 59:537–548 (2007).
M. J. Roberts, M. D. Bentley, and J. M. Harris. Chemistry for peptide and protein PEGylation. Adv. Drug Deliv. Rev. 54:459–476 (2002).
R. B. Greenwald, Y. H. Choe, J. McGuire, and C. D. Conover. Effective drug delivery by PEGylated drug conjugates. Adv. Drug Deliv. Rev. 55:217–250 (2003).
A. Nathan, S. Zalipsky, S. I. Ertel, S. N. Agathos, M. L. Yarmush, and J. Kohn. Copolymers of lysine and polyethylene glycol: a new family of functionalized drug carriers. Bioconjug. Chem. 4:54–62 (1993).
M. Pechar, K. Ulbrich, V. Subr, L. W. Seymour, and E. H. Schacht. Poly(ethylene glycol) multiblock copolymer as a carrier of anti-cancer drug doxorubicin. Bioconjug. Chem. 11:131–139 (2000).
J. Cheng, K. T. Khin, G. S. Jensen, A. Liu, and M. E. Davis. Synthesis of linear, beta-cyclodextrin-based polymers and their camptothecin conjugates. Bioconjug. Chem. 14:1007–1017 (2003).
Wang, A. Dong, H. Tang, E. A. Van Kirk, P. A. Johnson, W. J. Murdoch, M. Radosz, and Y. Shen. Synthesis of degradable functional poly(ethylene glycol) analogs as versatile drug delivery carriers. Macromol. Biosci. 7:1187–1198 (2007).
X. M. Liu, A. Thakur, and D. Wang. Efficient synthesis of linear multifunctional poly(ethylene glycol) by copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition. Biomacromolecules. 8:2653–2658 (2007).
S. Svenson, and D. A. Tomalia. Dendrimers in biomedical applications–reflections on the field. Adv. Drug Delivery Rev. 57:2106–2129 (2005).
A. Gopin, S. Ebner, B. Attali, and D. Shabat. Enzymatic activation of second-generation dendritic prodrugs: conjugation of self-immolative dendrimers with poly(ethylene glycol) via click chemistry. Bioconjugate Chem. 17:1432–1440 (2006).
Y. Qiu, and K. Park. Environment-sensitive hydrogels for drug delivery. Adv. Drug Delivery Rev. 53:321–339 (2001).
J. K. Tessmar, and A. M. Gopferich. Matrices and scaffolds for protein delivery in tissue engineering. Adv. Drug Delivery Rev. 59:274–291 (2007).
V. Crescenzi, L. Cornelio, C. Di Meo, S. Nardecchia, and R. Lamanna. Novel hydrogels via click chemistry: synthesis and potential biomedical applications. Biomacromolecules. 8:1844–1850 (2007).
M. Malkoch, R. Vestberg, N. Gupta, L. Mespouille, P. Dubois, A. F. Mason, J. L. Hedrick, Q. Liao, C. W. Frank, K. Kingsbury, and C. J. Hawker. Synthesis of well-defined hydrogel networks using click chemistry. Chem. Commun. 2006:2774–2776 (2006).
D. A. Ossipov, and J. Hilborn. Poly(vinyl alcohol)-based hydrogels formed by “click chemistry.”. Macromolecules. 39:1709–1718 (2006).
B. Sieczkowska, M. Millaruelo, M. Messerschmidt, and B. Voit. New photolabile functional polymers for patterning onto gold obtained by click chemistry. Macromolecules. 40:2361–2370 (2007).
B. Voit, S. Fleischmann, H. Komber, A. Scheel, and K. Stumpe. Cycloaddition reactions and dendritic polymer architectures-a perfect match. Macromol. Symp. 254:16–24 (2007).
J. Panyam, and V. Labhasetwar. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Delivery Rev. 55:329–347 (2003).
E. Katz, and I. Willner. Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew. Chem., Int. Ed. Engl. 43:6042–6108 (2004).
P. Couvreur, G. Barratt, E. Fattal, P. Legrand, and C. Vauthier. Nanocapsule technology: a review. Crit. Rev. Ther. Drug Carrier Syst. 19:99–134 (2002).
J. L. West, and N. J. Halas. Engineered nanomaterials for biophotonics applications: improving, sensing, imaging, and therapeutics. Annu. Rev. Biomed. Eng. 5:285–292 (2003).
P. W. Faulk, and M. G. Taylor. Immunocolloid method for the electron microscope. Immunochem. 8:1081–1083 (1971).
B.-S. Tan, X.-H. Cao, and Z.-H. Mo. Gold nanoparticles preparation and their application in DNA detection. Chongqing Daxue Xuebao, Ziran Kexueban. 26:58–62 (2003).
X. Huang, I. H. E.-Sayed, and M. A. E.-Sayed. The use of surface enhanced absorption, scattering and catalytic properties of gold nanoparticles in some bio-and biomedical applications. Proc. SPIE-Int. Soc. Opt. Eng. 5929 (2005).
G. Han, P. Ghosh, M. De, and V. M. Rotello. Drug and gene delivery using gold nanoparticles. NanoBiotech. 3:40–45 (2007).
J. L. Brennan, N. S. Hatzakis, R. T. Tshikhudo, N. Dirvianskyte, V. Razumas, S. Patkar, J. Vind, A. Svendsen, R. J. M. Nolte, A. E. Rowan, and M. Brust. Bionanoconjugation via click chemistry: the creation of functional hybrids of lipases and gold nanoparticles. Bioconjugate Chem. 17:1373–1375 (2006).
D. A. Fleming, C. J. Thode, and M. E. Williams. Triazole cycloaddition as a general route for functionalization of Au nanoparticles. Chem. Mater. 18:2327–2334 (2006).
A. Ito, M. Shinkai, H. Honda, and T. Kobayashi. Medical application of functionalized magnetic nanoparticles. J. Biosci. Bioeng. 100:1–11 (2005).
A. H. Lu, E. L. Salabas, and F. Schüth. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem., Int. Ed. Engl. 46:1222–1244 (2007).
P.-C. Lin, S.-H. Ueng, S.-C. Yu, M.-D. Jan, A. K. Adak, C.-C. Yu, and C.-C. Lin. Surface modification of magnetic nanoparticle via Cu(I)-catalyzed alkyne-azide [2+3] cycloaddition. Org. Lett. 9:2131–2134 (2007).
M. A. White, J. A. Johnson, J. T. Koberstein, and N. J. Turro. Toward the syntheses of universal ligands for metal oxide surfaces: controlling surface functionality through click chemistry. J. Am. Chem. Soc. 128:11356–11357 (2006).
A. D. Bangham, D. H. Heard, R. Flemans, and G. V. Seaman. An apparatus for microelectrophoresis of small particles. Nature (London). 182:642–644 (1958).
T. M. Allen, and P. R. Cullis. Drug delivery systems: entering the mainstream. Science (Washington, D.C.). 303:1818–1822 (2004).
M. L. Immordino, F. Dosio, and L. Cattel. Stealth lipsomes: review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomed. 1:297–315 (2006).
X. Guo, and F. C. Szoka Jr. Chemical approaches to triggerable lipid vesicles for drug and gene delivery. Acc. Chem. Res. 36:335–341 (2003).
L. Nobs, F. Buchegger, R. Gurny, and E. Allemann. Current methods for attaching targeting ligands to liposomes and nanoparticles. J. Pharm. Sci. 93:1980–1992 (2004).
O. Ishida, K. Maruyama, H. Tanahashi, M. Iwatsuru, K. Sasaki, M. Eriguchi, and H. Yanagie. Liposomes bearing polyethyleneglycol-coupled transferrin with intracellular targeting property to the solid tumors in vivo. Pharm. Res. 18:1042–1048 (2001).
J. T. Derksen, and G. L. Scherphof. An improved method for the covalent coupling of proteins to liposomes. Biochim. Biophys. Acta. 814:151–155 (1985).
L. Bourel-Bonnet, E. I. Pecheur, C. Grandjean, A. Blanpain, T. Baust, O. Melnyk, B. Hoflack, and H. Gras-Masse. Anchorage of synthetic peptides onto liposomes via hydrazone and alpha-oxo hydrazone bonds. Preliminary functional investigations. Bioconjugate Chem. 16:450–457 (2005).
S. F. Hassane, B. Frisch, and F. Schuber. Targeted liposomes: convenient coupling of ligands to preformed vesicles using “click chemistry”. Bioconjugate Chem. 17:849–854 (2006).
M. J. Copland, M. A. Baird, T. Rades, J. L. McKenzie, B. Becker, F. Reck, P. C. Tyler, and N. M. Davies. Liposomal delivery of antigen to human dendritic cells. Vaccine. 21:883–890 (2003).
S. Gal, I. Pinchuk, and D. Lichtenberg. Peroxidation of liposomal palmitoyllinoleoylphosphatidylcholine (PLPC), effects of surface charge on the oxidizability and on the potency of antioxidants. Chem. Phys. Lipids. 126:95–110 (2003).
S. Cavalli, A. R. Tipton, M. Overhand, and A. Kros. The chemical modification of liposome surfaces via a copper-mediated [3+2] azide-alkyne cycloaddition monitored by a colorimetric assay. Chem. Commun. 2006:3193–3195 (2006).
A. H. Dent. Optimizing bioconjugation processes. Pharm. Tech. Eur. 19:39–40, 43–46 (2007).
R. B. Silverman. Drug Discovery, Design, and Development. The Organic Chemistry of Drug Design and Drug Action, 2nd edn. Elsevier Scientific, San Diego, CA, 2004.
K. A. Stephenson, J. Zubieta, S. R. Banerjee, M. K. Levadala, L. Taggart, L. Ryan, N. McFarlane, D. R. Boreham, K. P. Maresca, J. W. Babich, and J. F. Valliant. A new strategy for the preparation of peptide-targeted radiopharmaceuticals based on an Fmoc-lysine-derived single amino acid chelate (SAAC). Automated solid-phase synthesis, NMR characterization, and in vitro screening of fMLF(SAAC)G and fMLF[(SAAC-Re(CO)3)+]G. Bioconjugate Chem. 15:128–136 (2004).
S. Liu, S. D. Edwards, and J. A. Barrett. 99mTc labeling of highly potent small peptides. Bioconjugate Chem. 8:621–636 (1997).
P. Bouziotis, M. Fani, S. C. Archimandritis, G. Loundos, M. Paravatou, R. Bicknell, A. L. Harris, S. Xanthopoulos, N. Stratis, and A. D. Varvarigou. Samarium-153 and technetium-99m-labeled monoclonal antibodies in angiogenesis for tumor visualization and inhibition. Anticancer Res. 23:2167–2171 (2003).
M. P. White, A. Mann, D. M. Cross, and G. V. Heller. Evaluation of technetium-99m red blood cell labeling efficiency in adults receiving chemotherapy and the clinical impact on pediatric oncology patients. J. Nucl. Med. Tech. 26:265–268 (1998).
R. Alberto, R. Schibli, A. Egli, A. P. Schubiger, U. Abram, and T. A. Kaden. A novel organometallic aqua complex of technetium for the labeling of biomolecules: synthesis of [99mTc(OH2)3(CO)3] + from [99mTcO4]- in aqueous solution and its reaction with a bifunctional ligand. J. Am. Chem. Soc. 120:7987–7988 (1998).
T. L. Mindt, H. Struthers, L. Brans, T. Anguelov, C. Schweinsberg, V. Maes, D. Tourwe, and R. Schibli. “Click to chelate”: synthesis and installation of metal chelates into biomolecules in a single step. J. Am. Chem. Soc. 128:15096–15097 (2006).
W. Chen, and G. Georgiou. Cell-surface display of heterologous proteins: from high-throughput screening to environmental applications. Biotechnol. Bioeng. 79:496–503 (2002).
J. A. Link, and D. A. Tirrell. Cell surface labeling of Escherichia coli via copper(I)-catalyzed [3 + 2] cycloaddition. J. Am. Chem. Soc. 125:11164–11165 (2003).
K. L. Kiick, E. Saxon, D. A. Tirrell, and C. R. Bertozzi. Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proc. Natl. Acad. Sci. U.S.A. 99:19–24 (2002).
A. Basle, G. Rummel, P. Storici, J. P. Rosenbusch, and T. Schirmer. Crystal structure of osmoporin OmpC from E. coli at 2.0 ANG. J. Mol. Bio. 362:933–942 (2006).
Q. Wang, T. R. Chan, R. Hilgraf, V. V. Fokin, K. B. Sharpless, and M. G. Finn. Bioconjugation by copper(I)-catalyzed azide-alkyne [3+2] cycloaddition. J. Am. Chem. Soc. 125:3192–3193 (2003).
Q. Wang, E. Kaltgrad, T. Lin, J. E. Johnson, and M. G. Finn. Natural supramolecular building blocks: wild-type cowpea mosaic virus. Chem. Bio. 9:805–811 (2002).
Q. Wang, T. Lin, L. Tang, J. E. Johnson, and M. G. Finn. Icosahedral virus particles as addressable nanoscale building blocks. Angew. Chem., Int. Ed. Engl. 41:459–462 (2002).
Q. Wang, K. S. Raja, K. D. Janda, T. Lin, and M. G. Finn. Blue fluorescent antibodies as reporters of steric accessibility in virus conjugates. Bioconjugate Chem. 14:38–43 (2003).
M. H. Caruthers. Gene synthesis machines: DNA chemistry and its uses. Science (Washington, D.C.). 230:281–285 (1985).
H. K. Tewary, and P. L. Iversen. Qualitative and quantitative measurements of oligonucleotides in gene therapy: part II in vivo models. J. Pharm. Biomed. Anal. 15:1127–1135 (1997).
A. M. Gewirtz. Antisense oligonucleotide therapeutics for human leukemia. Curr. Opin. Hemat. 5:59–71 (1998).
M. Schena, D. Shalon, R. W. Davis, and P. O. Brown. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science (Wash. D.C.). 270:467–470 (1995).
T. S. Seo, Z. Li, H. Ruparel, and J. Ju. Click chemistry to construct fluorescent oligonucleotides for DNA sequencing. J. Org. Chem. 68:609–612 (2003).
F. Seela, V. R. Sirivolu, and P. Chittepu. Modification of DNA with octadiynyl side chains: synthesis, base pairing, and formation of fluorescent coumarin dye conjugates of four nucleobases by the alkyne-azide “click reaction”. Bioconjugate Chem. 19:211–224 (2008).
G. M. Cooper. The Cell Surface. The Cell: A Molecular Approach, 2nd edn. Sinauer, Sunderland, MA, 2000.
D. B. Werz, and P. H. Seeberger. Carbohydrates as the next frontier in pharmaceutical research. Chem. Eur. J. 11:3194–3026 (2005).
G. Eglinton and A. R. Galbraith. Cyclic diynes. Chem. Ind. (London). 1956:737–738 (1956).
P. Siemsen, R. C. Livingston, and F. Diederich. Acetylenic coupling: a powerful tool in molecular construction. Angew. Chem., Int. Ed. Engl. 39:2632–2657 (2000).
M. D. Cameron, and G. E. Bennett. Use of amines in the glaser coupling reaction. J. Org. Chem. 22:557–558 (1957).
F. Bohlmann, H. Schonowsky, E. Inhoffen, and G. Grau. Polyacetylenic compounds. LII. The mechanism of oxidative dimerization of acetylene compounds. Chem. Ber. 97:794–800 (1964).
E. H. Ryu, and Y. Zhao. Efficient synthesis of water-soluble calixarenes using click chemistry. Org. Lett. 7:1035–1037 (2005).
T. Wang, and Z. Guo. Copper in medicine: homeostasis, chelation therapy and antitumor drug design. Curr. Med. Chem. 13:525–537 (2006).
K. D. Held, C. F. Sylvester, K. L. Hopcia, and J. E. Biaglow. Role of Fenton chemistry in thiol-induced toxicity and apoptosis. Radiat. Res. 145:542–553 (1996).