Phân loại lý thuyết đo lường siêu hình học lớn N với phổ dày đặc

Journal of High Energy Physics - Tập 2021 - Trang 1-56 - 2021
Prarit Agarwal1, Ki-Hong Lee2, Jaewon Song2,3
1CRST and School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
2Asia Pacific Center for Theoretical Physics, Pohang, Korea
3Department of Physics, Korea Advanced Institute of Science and Technology, Yuseong-gu, Korea

Tóm tắt

Chúng tôi phân loại các giới hạn lớn N của các lý thuyết đo lường siêu hình học bốn chiều với các nhóm đo lường đơn giản, chảy tới các điểm cố định siêu đồng phẳng. Chúng tôi giới hạn mình trong các lý thuyết không có siêu tiềm năng và có đối xứng hương vị cố định. Chúng tôi tìm thấy tổng cộng 35 lớp, với 8 có phổ dày đặc của các toán tử chiral bảo toàn đo lường. Các số liệu trung tâm a và c cho các lý thuyết dày đặc phát triển theo N một cách tuyến tính, trái ngược với sự phát triển N^2 cho các lý thuyết có phổ thưa. Sự khác biệt giữa các số liệu trung tâm a - c có thể có cả hai dấu và không biến mất trong giới hạn lớn N cho các lý thuyết dày đặc. Chúng tôi phát hiện rằng tồn tại nhiều băng tần tách biệt bởi một khoảng trống, hoặc một phổ rời rạc phía trên băng tần. Chúng tôi cũng tìm thấy một tiêu chí về nội dung vật chất để lý thuyết điểm cố định có thể sở hữu hoặc phổ dày đặc hoặc thưa thớt. Chúng tôi phát hiện ra một số khía cạnh thú vị liên quan đến dòng RG siêu hình học và việc tối ưu hóa a trong quá trình này. Đối với tất cả các lý thuyết có phổ dày đặc, phiên bản AdS của Giả thuyết Độ yếu về trọng lực (bao gồm cả điều kiện tấm lồi cho các trường hợp có nhiều U(1)) vẫn đúng cho N đủ lớn mặc dù chúng không có các đối xứng trọng lực yếu liên kết.

Từ khóa

#lý thuyết siêu đồng phẳng #phổ dày đặc #số liệu trung tâm #dòng RG siêu hình học #giả thuyết độ yếu về trọng lực

Tài liệu tham khảo

G. ’t Hooft, A Planar Diagram Theory for Strong Interactions, Nucl. Phys. B 72 (1974) 461 [INSPIRE]. J. M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE]. S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE]. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE]. I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field Theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE]. S. El-Showk and K. Papadodimas, Emergent Spacetime and Holographic CFTs, JHEP 10 (2012) 106 [arXiv:1101.4163] [INSPIRE]. P. Agarwal and J. Song, Large N Gauge Theories with a Dense Spectrum and the Weak Gravity Conjecture, JHEP 05 (2021) 124 [arXiv:1912.12881] [INSPIRE]. A. Buchel, R. C. Myers and A. Sinha, Beyond η/s = 1/4π, JHEP 03 (2009) 084 [arXiv:0812.2521] [INSPIRE]. L. Di Pietro and Z. Komargodski, Cardy formulae for SUSY theories in d = 4 and d = 6, JHEP 12 (2014) 031 [arXiv:1407.6061] [INSPIRE]. A. Arabi Ardehali, High-temperature asymptotics of supersymmetric partition functions, JHEP 07 (2016) 025 [arXiv:1512.03376] [INSPIRE]. E. Perlmutter, M. Rangamani and M. Rota, Central Charges and the Sign of Entanglement in 4D Conformal Field Theories, Phys. Rev. Lett. 115 (2015) 171601 [arXiv:1506.01679] [INSPIRE]. N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The String landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [INSPIRE]. Y. Nakayama and Y. Nomura, Weak gravity conjecture in the AdS/CFT correspondence, Phys. Rev. D 92 (2015) 126006 [arXiv:1509.01647] [INSPIRE]. L. Bhardwaj and Y. Tachikawa, Classification of 4d N = 2 gauge theories, JHEP 12 (2013) 100 [arXiv:1309.5160] [INSPIRE]. K. Maruyoshi, E. Nardoni and J. Song, Landscape of Simple Superconformal Field Theories in 4d, Phys. Rev. Lett. 122 (2019) 121601 [arXiv:1806.08353] [INSPIRE]. K. Maruyoshi, E. Nardoni and J. Song, General Deformations of 4d SCFTs and RG Flows, to appear. S. S. Razamat, E. Sabag and G. Zafrir, Weakly coupled conformal manifolds in 4d, JHEP 06 (2020) 179 [arXiv:2004.07097] [INSPIRE]. P. Argyres, M. Lotito, Y. Lü and M. Martone, Geometric constraints on the space of \( \mathcal{N} \) = 2 SCFTs. Part I: physical constraints on relevant deformations, JHEP 02 (2018) 001 [arXiv:1505.04814] [INSPIRE]. P. C. Argyres, M. Lotito, Y. Lü and M. Martone, Geometric constraints on the space of \( \mathcal{N} \) = 2 SCFTs. Part II: construction of special Kähler geometries and RG flows, JHEP 02 (2018) 002 [arXiv:1601.00011] [INSPIRE]. P. C. Argyres, M. Lotito, Y. Lü and M. Martone, Expanding the landscape of \( \mathcal{N} \) = 2 rank 1 SCFTs, JHEP 05 (2016) 088 [arXiv:1602.02764] [INSPIRE]. P. Argyres, M. Lotito, Y. Lü and M. Martone, Geometric constraints on the space of \( \mathcal{N} \) = 2 SCFTs. Part III: enhanced Coulomb branches and central charges, JHEP 02 (2018) 003 [arXiv:1609.04404] [INSPIRE]. M. Caorsi and S. Cecotti, Geometric classification of 4d \( \mathcal{N} \) = 2 SCFTs, JHEP 07 (2018) 138 [arXiv:1801.04542] [INSPIRE]. M. Caorsi and S. Cecotti, Homological classification of 4d \( \mathcal{N} \) = 2 QFT. Rank-1 revisited, JHEP 10 (2019) 013 [arXiv:1906.03912] [INSPIRE]. P. Argyres and M. Martone, Construction and classification of Coulomb branch geometries, arXiv:2003.04954 [INSPIRE]. P. C. Argyres and M. R. Douglas, New phenomena in SU(3) supersymmetric gauge theory, Nucl. Phys. B 448 (1995) 93 [hep-th/9505062] [INSPIRE]. P. C. Argyres, M. R. Plesser, N. Seiberg and E. Witten, New N = 2 superconformal field theories in four-dimensions, Nucl. Phys. B 461 (1996) 71 [hep-th/9511154] [INSPIRE]. K. Maruyoshi and J. Song, Enhancement of Supersymmetry via Renormalization Group Flow and the Superconformal Index, Phys. Rev. Lett. 118 (2017) 151602 [arXiv:1606.05632] [INSPIRE]. K. Maruyoshi and J. Song, \( \mathcal{N} \) = 1 deformations and RG flows of \( \mathcal{N} \) = 2 SCFTs, JHEP 02 (2017) 075 [arXiv:1607.04281] [INSPIRE]. P. Agarwal, K. Maruyoshi and J. Song, \( \mathcal{N} \) = 1 Deformations and RG flows of \( \mathcal{N} \) = 2 SCFTs, part II: non-principal deformations, JHEP 12 (2016) 103 [Addendum ibid. 04 (2017) 113] [arXiv:1610.05311] [INSPIRE]. P. Agarwal, A. Sciarappa and J. Song, \( \mathcal{N} \) = 1 Lagrangians for generalized Argyres-Douglas theories, JHEP 10 (2017) 211 [arXiv:1707.04751] [INSPIRE]. S. Benvenuti and S. Giacomelli, Lagrangians for generalized Argyres-Douglas theories, JHEP 10 (2017) 106 [arXiv:1707.05113] [INSPIRE]. K. A. Intriligator, R. G. Leigh and M. J. Strassler, New examples of duality in chiral and nonchiral supersymmetric gauge theories, Nucl. Phys. B 456 (1995) 567 [hep-th/9506148] [INSPIRE]. E. Witten, An SU(2) Anomaly, Phys. Lett. B 117 (1982) 324 [INSPIRE]. K. A. Intriligator and B. Wecht, The Exact superconformal R symmetry maximizes a, Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [INSPIRE]. D. Anselmi, D. Z. Freedman, M. T. Grisaru and A. A. Johansen, Nonperturbative formulas for central functions of supersymmetric gauge theories, Nucl. Phys. B 526 (1998) 543 [hep-th/9708042] [INSPIRE]. P. Kovtun, D. T. Son and A. O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE]. D. Kutasov, A. Parnachev and D. A. Sahakyan, Central charges and U(1)R symmetries in N = 1 superYang-Mills, JHEP 11 (2003) 013 [hep-th/0308071] [INSPIRE]. E. Barnes, K. A. Intriligator, B. Wecht and J. Wright, Evidence for the strongest version of the 4d a-theorem, via a-maximization along RG flows, Nucl. Phys. B 702 (2004) 131 [hep-th/0408156] [INSPIRE]. S. Benvenuti and S. Giacomelli, Supersymmetric gauge theories with decoupled operators and chiral ring stability, Phys. Rev. Lett. 119 (2017) 251601 [arXiv:1706.02225] [INSPIRE]. M. Fluder and J. Song, Four-dimensional Lens Space Index from Two-dimensional Chiral Algebra, JHEP 07 (2018) 073 [arXiv:1710.06029] [INSPIRE]. P. Agarwal, On dimensional reduction of 4d N = 1 Lagrangians for Argyres-Douglas theories, JHEP 03 (2019) 011 [arXiv:1809.10534] [INSPIRE]. K. A. Intriligator, IR free or interacting? A Proposed diagnostic, Nucl. Phys. B 730 (2005) 239 [hep-th/0509085] [INSPIRE]. C. Cheung and G. N. Remmen, Naturalness and the Weak Gravity Conjecture, Phys. Rev. Lett. 113 (2014) 051601 [arXiv:1402.2287] [INSPIRE]. N. Benjamin, E. Dyer, A. L. Fitzpatrick and S. Kachru, Universal Bounds on Charged States in 2d CFT and 3d Gravity, JHEP 08 (2016) 041 [arXiv:1603.09745] [INSPIRE]. M. Montero, G. Shiu and P. Soler, The Weak Gravity Conjecture in three dimensions, JHEP 10 (2016) 159 [arXiv:1606.08438] [INSPIRE]. J.-B. Bae, S. Lee and J. Song, Modular Constraints on Superconformal Field Theories, JHEP 01 (2019) 209 [arXiv:1811.00976] [INSPIRE]. B. Heidenreich, M. Reece and T. Rudelius, Evidence for a sublattice weak gravity conjecture, JHEP 08 (2017) 025 [arXiv:1606.08437] [INSPIRE]. M. Montero, A Holographic Derivation of the Weak Gravity Conjecture, JHEP 03 (2019) 157 [arXiv:1812.03978] [INSPIRE]. A. Hanany, N. Mekareeya and G. Torri, The Hilbert Series of Adjoint SQCD, Nucl. Phys. B 825 (2010) 52 [arXiv:0812.2315] [INSPIRE]. T. Eguchi, K. Hori, K. Ito and S.-K. Yang, Study of N = 2 superconformal field theories in four-dimensions, Nucl. Phys. B 471 (1996) 430 [hep-th/9603002] [INSPIRE]. T. Eguchi and K. Hori, N = 2 superconformal field theories in four-dimensions and A-D-E classification, in Conference on the Mathematical Beauty of Physics (In Memory of C. Itzykson), pp. 67–82 (1996) [hep-th/9607125] [INSPIRE]. S. Cecotti, A. Neitzke and C. Vafa, R-Twisting and 4d/2d Correspondences, arXiv:1006.3435 [INSPIRE]. D. Xie, General Argyres-Douglas Theory, JHEP 01 (2013) 100 [arXiv:1204.2270] [INSPIRE]. Y. Wang and D. Xie, Classification of Argyres-Douglas theories from M5 branes, Phys. Rev. D 94 (2016) 065012 [arXiv:1509.00847] [INSPIRE]. O. Aharony, A. Fayyazuddin and J. M. Maldacena, The Large N limit of N = 2, N = 1 field theories from three-branes in F-theory, JHEP 07 (1998) 013 [hep-th/9806159] [INSPIRE]. N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE]. Z. Komargodski and A. Schwimmer, On Renormalization Group Flows in Four Dimensions, JHEP 12 (2011) 099 [arXiv:1107.3987] [INSPIRE]. A. Amariti and K. Intriligator, ∆a curiosities in some 4d SUSY RG flows, JHEP 11 (2012) 108 [arXiv:1209.4311] [INSPIRE]. D. Kutasov, A Comment on duality in N = 1 supersymmetric nonAbelian gauge theories, Phys. Lett. B 351 (1995) 230 [hep-th/9503086] [INSPIRE]. D. Kutasov and A. Schwimmer, On duality in supersymmetric Yang-Mills theory, Phys. Lett. B 354 (1995) 315 [hep-th/9505004] [INSPIRE]. K. A. Intriligator, New RG fixed points and duality in supersymmetric SP(Nc) and SO(Nc) gauge theories, Nucl. Phys. B 448 (1995) 187 [hep-th/9505051] [INSPIRE]. R. G. Leigh and M. J. Strassler, Duality of Sp(2Nc) and S0(Nc) supersymmetric gauge theories with adjoint matter, Phys. Lett. B 356 (1995) 492 [hep-th/9505088] [INSPIRE]. O. Aharony, J. Sonnenschein and S. Yankielowicz, Flows and duality symmetries in N = 1 supersymmetric gauge theories, Nucl. Phys. B 449 (1995) 509 [hep-th/9504113] [INSPIRE]. M. Berkooz, The Dual of supersymmetric SU(2K) with an antisymmetric tensor and composite dualities, Nucl. Phys. B 452 (1995) 513 [hep-th/9505067] [INSPIRE]. P. Pouliot, Duality in SUSY SU(N) with an antisymmetric tensor, Phys. Lett. B 367 (1996) 151 [hep-th/9510148] [INSPIRE]. P. Pouliot, Chiral duals of nonchiral SUSY gauge theories, Phys. Lett. B 359 (1995) 108 [hep-th/9507018] [INSPIRE]. K. A. Intriligator and B. Wecht, RG fixed points and flows in SQCD with adjoints, Nucl. Phys. B 677 (2004) 223 [hep-th/0309201] [INSPIRE]. S. Benvenuti and S. Giacomelli, Abelianization and sequential confinement in 2 + 1 dimensions, JHEP 10 (2017) 173 [arXiv:1706.04949] [INSPIRE]. N. Aghaei, A. Amariti and Y. Sekiguchi, Notes on Integral Identities for 3d Supersymmetric Dualities, JHEP 04 (2018) 022 [arXiv:1709.08653] [INSPIRE]. I. R. Klebanov and A. M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE]. M. R. Gaberdiel and R. Gopakumar, An AdS3 Dual for Minimal Model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE]. N. Arkani-Hamed, A. G. Cohen and H. Georgi, (De)constructing dimensions, Phys. Rev. Lett. 86 (2001) 4757 [hep-th/0104005] [INSPIRE]. N. Arkani-Hamed, A. G. Cohen, D. B. Kaplan, A. Karch and L. Motl, Deconstructing (2, 0) and little string theories, JHEP 01 (2003) 083 [hep-th/0110146] [INSPIRE]. D. Harlow, Wormholes, Emergent Gauge Fields, and the Weak Gravity Conjecture, JHEP 01 (2016) 122 [arXiv:1510.07911] [INSPIRE]. T. Crisford, G. T. Horowitz and J. E. Santos, Testing the Weak Gravity-Cosmic Censorship Connection, Phys. Rev. D 97 (2018) 066005 [arXiv:1709.07880] [INSPIRE]. J. P. Conlon and F. Quevedo, Putting the Boot into the Swampland, JHEP 03 (2019) 005 [arXiv:1811.06276] [INSPIRE]. G. T. Horowitz and J. E. Santos, Further evidence for the weak gravity — cosmic censorship connection, JHEP 06 (2019) 122 [arXiv:1901.11096] [INSPIRE]. L. F. Alday and E. Perlmutter, Growing Extra Dimensions in AdS/CFT, JHEP 08 (2019) 084 [arXiv:1906.01477] [INSPIRE]. S. Cremonini, C. R. T. Jones, J. T. Liu and B. McPeak, Higher-Derivative Corrections to Entropy and the Weak Gravity Conjecture in Anti-de Sitter Space, JHEP 09 (2020) 003 [arXiv:1912.11161] [INSPIRE]. Y. Nakayama, Bootstrap bound on extremal Reissner-Nordström black hole in AdS, Phys. Lett. B 808 (2020) 135677 [arXiv:2004.08069] [INSPIRE]. S. W. Hawking and D. N. Page, Thermodynamics of Black Holes in anti-de Sitter Space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE]. E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE]. S. Choi, J. Kim, S. Kim and J. Nahmgoong, Comments on deconfinement in AdS/CFT, arXiv:1811.08646 [INSPIRE]. A. Cabo-Bizet and S. Murthy, Supersymmetric phases of 4d \( \mathcal{N} \) = 4 SYM at large N, JHEP 09 (2020) 184 [arXiv:1909.09597] [INSPIRE]. A. Arabi Ardehali, J. Hong and J. T. Liu, Asymptotic growth of the 4d \( \mathcal{N} \) = 4 index and partially deconfined phases, JHEP 07 (2020) 073 [arXiv:1912.04169] [INSPIRE]. A. Cabo-Bizet, D. Cassani, D. Martelli and S. Murthy, The large-N limit of the 4d \( \mathcal{N} \) = 1 superconformal index, JHEP 11 (2020) 150 [arXiv:2005.10654] [INSPIRE]. S. Choi, J. Kim, S. Kim and J. Nahmgoong, Large AdS black holes from QFT, arXiv:1810.12067 [INSPIRE]. F. Benini and P. Milan, Black Holes in 4D \( \mathcal{N} \) = 4 Super-Yang-Mills Field Theory, Phys. Rev. X 10 (2020) 021037 [arXiv:1812.09613] [INSPIRE]. A. Arabi Ardehali, Cardy-like asymptotics of the 4d \( \mathcal{N} \) = 4 index and AdS5 blackholes, JHEP 06 (2019) 134 [arXiv:1902.06619] [INSPIRE]. M. Honda, Quantum Black Hole Entropy from 4d Supersymmetric Cardy formula, Phys. Rev. D 100 (2019) 026008 [arXiv:1901.08091] [INSPIRE]. J. Kim, S. Kim and J. Song, A 4d \( \mathcal{N} \) = 1 Cardy Formula, JHEP 01 (2021) 025 [arXiv:1904.03455] [INSPIRE]. A. Cabo-Bizet, D. Cassani, D. Martelli and S. Murthy, The asymptotic growth of states of the 4d \( \mathcal{N} \) = 1 superconformal index, JHEP 08 (2019) 120 [arXiv:1904.05865] [INSPIRE].