Classification of data with a qudit, a geometric approach
Tóm tắt
We propose a model for data classification using isolated quantum
$$\varvec{d}$$
-level systems or else qudits. The procedure consists of an encoding phase where classical data are mapped on the surface of the qudit’s Bloch hyper-sphere via rotation encoding, followed by a rotation of the sphere and a projective measurement. The rotation is adjustable in order to control the operator to be measured, while additional weights are introduced in the encoding phase adjusting the mapping on the Bloch’s hyper-surface. During the training phase, a cost function based on the average expectation value of the observable is minimized using gradient descent thereby adjusting the weights. Using examples and performing a numerical estimation of lossless memory dimension, we demonstrate that this geometrically inspired qudit model for classification is able to solve nonlinear classification problems using a small number of parameters only and without requiring entangling operations.
Từ khóa
Tài liệu tham khảo
Abbas A, Sutter D, Zoufal C et al (2021) The power of quantum neural networks. Nat Comput Sci 1:403–409. https://doi.org/10.1038/s43588-021-00084-1
Amblard Z, Arnault F (2015) A Quantum Key Distribution Protocol for qudits with better noise resistance. https://doi.org/10.48550/arXiv.1504.08161
Barnum H, Knill E, Ortiz G, Somma R, Viola L (2004) A subsystem-independent generalization of entanglement. Phys Rev Lett 92(7):107902. https://doi.org/10.1103/PhysRevLett.92.107902
Biamonte J, Wittek P, Pancotti N et al (2017) Quantum machine learning. Nature 549(7671):195–202. https://doi.org/10.1038/nature23474
Blok MS et al (2021) Quantum information scrambling on a superconducting qutrit processor. Phys Rev X 11:021010. https://doi.org/10.1103/PhysRevX.11.021010
Cao Y, Guerreschi G, Aspuru-Guzik A (2017) Quantum Neuron: an elementary building block for machine learning on quantum computers. https://doi.org/10.48550/arXiv.1711.11240
Cerezo M, Arrasmith A, Babbush R et al (2021) Variational quantum algorithms. Nat Rev Phys 3:625–644. https://doi.org/10.1038/s42254-021-00348-9
Cozzolino D, Da Lio B, Bacco D (2019) High-dimensional quantum communication: benefits, progress, and future challenges. Adv Quantum Technol 2:1900038. https://doi.org/10.1002/qute.201900038
Dellen B, Jaekel U (2021) Solving nonlinear classification and regression problems by wave interference with a single-layer complex-valued perceptron. 2021 IEEE Symposium series on computational intelligence (SSCI), Orlando, FL, USA, pp 01–08. https://doi.org/10.1109/SSCI50451.2021.9659865.
Dellen B, Jaekel U, Wolnitza M (2019) Function and pattern extrapolation with product-unit networks. Computational science – ICCS 2019, Springer, pp 174–188 isbn 978-3-030-22741-8
Deller Y, Schmitt S, Lewenstein M et al (2023) Quantum approximate optimization algorithm for qudit systems. Phys Rev A 107:062410. https://doi.org/10.1103/PhysRevA.107.062410
Dua D, Graff C, (2017) UCI Machine learning repository. http://archive.ics.uci.edu/ml
Dunjko V, Briegel HJ (2018) Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Rep Prog Phys 81(7):074001–67. https://doi.org/10.1088/1361-6633/aab406
Durbin R, Rumelhart DE (1989) Product units: a computationally powerful and biologically plausible extension to backpropagation networks. Neural Comput 1(1):133–142. https://doi.org/10.1162/neco.1989.1.1.133
Erhard M, Malik M, Krenn M et al (2018) Experimental Greenberger-Horne-Zeilinger entanglement beyond qubits. Nature Photon 12:759–764. https://doi.org/10.1038/s41566-018-0257-6
Farhi E, Neven H (2018) Classification with quantum neural networks on near term processors. https://doi.org/10.48550/arXiv.1802.06002
Fedorov A, Steffen L, Baur M et al (2012) Implementation of a Toffoli Gate with Superconducting circuits. Nature 481:170–172. https://doi.org/10.1038/nature10713
Friedland G, Krell M (2018) A capacity scaling law for artificial neural networks. https://doi.org/10.48550/arXiv.1708.06019
Gedik Z, Silva I, Çakmak B et al (2015) Computational speed-up with a single qudit. Sci Rep 5:14671. https://doi.org/10.1038/srep14671
Gokhale P, Baker JM, Duckering C, Brown NC, Brown KR, Chong FT (2019) Asymptotic improvements to quantum circuits via qutrits. ISCA ’19: Proceedings of the 46th international symposium on computer architecture, pp 554–566. https://doi.org/10.1145/3307650.3322253
Havlíček V, Córcoles AD, Temme K et al (2019) Supervised learning with quantum enhanced feature spaces. Nat 567:209. https://doi.org/10.1038/s41586-019-0980-2
Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24:7. https://doi.org/10.2307/233395
Imany P, Jaramillo-Villegas JA, Alshaykh MS et al (2019) High-dimensional optical quantum logic in large operational spaces. npj Quantum Inf 5:59. https://doi.org/10.1038/s41534-019-0173-8
Kues M, Reimer C, Roztocki P et al (2017) On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 546:622–626. https://doi.org/10.1038/nature22986
Kunzhe D et al (2018) Demonstration of quantum permutation parity determine algorithm in a superconducting qutrit. Chin Phys B 27:060305. https://doi.org/10.1088/1674-1056/27/6/060305
Lapkiewicz R, Li P, Schaeff C et al (2011) Experimental non-classicality of an indivisible quantum system. Nature 474:490–493. https://doi.org/10.1038/nature10119
Liu DC, Nocedal J (1989) On the limited memory BFGS method for large scale optimization. Math Program 45:503. https://doi.org/10.1007/BF01589116
Luo YH et al (2019) Quantum teleportation in high dimensions. Phys Rev Lett 123:070505. https://doi.org/10.1103/PhysRevLett.123.070505
Mackay DJC (2003) Information theory, inference, and learning algorithms. Cambridge University Press, New York, USA
Pavlidis A, Floratos E (2021) Quantum-Fourier-transform-based quantum arithmetic with qudits. Phys Rev A 103:032417. https://doi.org/10.1103/PhysRevA.103.032417
Pérez-Salinas A, Cervera-Lierta A, Gil-Fuster E, Latorre JI (2020) Data re-uploading for a universal quantum classifier. Quantum 4:226. https://doi.org/10.22331/q-2020-02-06-226
Ringbauer M, Meth M, Postler L et al (2022) A universal qudit quantum processor with trapped ions. Nat Phys 18:1053–1057. https://doi.org/10.1038/s41567-022-01658-0
Rosenblum S et al (2018) Fault-tolerant detection of a quantum error. Science 361:266. https://doi.org/10.1126/science.aat3996
Schuld M (2021) Supervised quantum machine learning models are kernel methods. https://doi.org/10.48550/arXiv.2101.11020
Schuld M, Killoran N (2019) Quantum machine learning in feature hilbert spaces. Phys Rev Lett 122:040504. https://doi.org/10.1103/PhysRevLett.122.040504
Schuld M, Sinayskiy I, Petruccione F (2014) The quest for a Quantum Neural Network. Quantum Inf Process 13:2567. https://doi.org/10.1007/s11128-014-0809-8
Schuld M, Bocharov A, Svore KM, Wiebe N (2020) Circuit-centric quantum classifiers. Phys Rev A 101(3):032308. https://doi.org/10.1103/PhysRevA.101.032308
Schuld M, Bergholm V, Gogolin C, Izaac J, Killoran N (2019) Evaluating analytic gradients on quantum hardware. Phys Rev A 99:032331. https://doi.org/10.48550/arXiv.1811.11184
Sheridan L, Scarani V (2010) Security proof for quantum key distribution using qudit systems. Phys Rev A 82:030301(R). https://doi.org/10.1103/PhysRevA.82.030301
Tacchino F, Macchiavello C, Gerace D et al (2019) An artificial neuron implemented on an actual quantum processor. npj Quantum Inf 5:26. https://doi.org/10.1038/s41534-019-0140-4
Torrontegui E, García-Ripoll JJ (2019) Unitary quantum perceptron as efficient universal approximator. Europhys Lett 125:30004. https://doi.org/10.1209/0295-5075/125/30004
Useche DH, Giraldo-Carvajal A, Zuluaga-Bucheli HM et al (2022) Quantum measurement classification with qudits. Quantum Inf Process 21:12. https://doi.org/10.1007/s11128-021-03363-y
Vapnik VN, Chervonenkis AY (1971) On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab Appl 16(2):264–280
Verdon G, Broughton M, Biamonte J (2017) A quantum algorithm to train neural networks using low-depth circuits. https://doi.org/10.48550/arXiv.1712.05304
Wach NL, Rudolph MS, Jendrzejewski F, Schmitt S (2023) Data re-uploading with a single qudit. https://doi.org/10.48550/arXiv.2302.13932
Wan KH, Dahlsten O, Kristjánsson H et al (2017) Quantum generalisation of feedforward neural networks. npj Quantum Inf 3:36. https://doi.org/10.1038/s41534-017-0032-4
Wang Y, Hu Z, Sanders BC, Kais S (2020) Qudits and high-dimensional quantum computing. Front. Phys. 8. https://doi.org/10.3389/fphy.2020.589504
Weggemans JR, Urech A, Rausch A et al (2022) Solving correlation clustering with QAOA and a Rydberg qudit system: a full-stack approach. Quantum 6:687. https://doi.org/10.22331/q-2022-04-13-687
Wright LG, McMahon PL, (2020) The Capacity of Quantum Neural Networks. (2020) Conference on Lasers and Electro-Optics (CLEO). San Jose, CA, USA, pp 1–2