Classical splitting of parametrized quantum circuits
Tóm tắt
Barren plateaus appear to be a major obstacle for using variational quantum algorithms to simulate large-scale quantum systems or to replace traditional machine learning algorithms. They can be caused by multiple factors such as the expressivity of the ansatz, excessive entanglement, the locality of observables under consideration, or even hardware noise. We propose classical splitting of parametric ansatz circuits to avoid barren plateaus. Classical splitting is realized by subdividing an N qubit ansatz into multiple ansätze that consist of
$$\mathcal {O}(\log N)$$
qubits. We show that such an approach allows for avoiding barren plateaus and carry out numerical experiments, and perform binary classification on classical and quantum datasets. Moreover, we propose an extension of the ansatz that is compatible with variational quantum simulations. Finally, we discuss a speed-up for gradient-based optimization and hardware implementation, robustness against noise and parallelization, making classical splitting an ideal tool for noisy intermediate scale quantum (NISQ) applications.
Tài liệu tham khảo
Anschuetz ER, Kiani BT (2022) Quantum variational algorithms are swamped with traps. Nature Communications 13(1):7760. https://doi.org/10.1038/s41467-022-35364-5. Number: 1 Publisher: Nature Publishing Group. Accessed 2022-12-15
Arrasmith, A., Cerezo, M., Czarnik, P., Cincio, L., Coles, P.J.: Effect of barren plateaus on gradient-free optimization. Quantum 5, 558 (2021). 10.22331/q-2021-10-05-558
Arrasmith A, Holmes Z, Cerezo M, Coles PJ (2022) Equivalence of quantum barren plateaus to cost concentration and narrow gorges. Quantum Science and Technology 7(4):045015. https://doi.org/10.1088/2058-9565/ac7d06
Basu, S., Saha, A., Chakrabarti, A., Sur-Kolay, S.: \(i\)-QER: An Intelligent Approach towards Quantum Error Reduction. arXiv:2110.06347 (2022). 10.48550/arXiv.2110.0634
Beckey JL, Gigena N, Coles PJ, Cerezo M (2021) Computable and Operationally Meaningful Multipartite Entanglement Measures. Phys. Rev. Letters 127(14):140501. https://doi.org/10.1103/PhysRevLett.127.140501
Bergholm, V., Izaac, J., Schuld, M., Gogolin, C., Alam, M.S., Ahmed, S., Arrazola, J.M., Blank, C., Delgado, A., Jahangiri, S., McKiernan, K., Meyer, J.J., Niu, Z., Száva, A., Killoran, N.: PennyLane: Automatic differentiation of hybrid quantum-classical computations. http://arxiv.org/abs/1811.04968arXiv:1811.04968 (2020). 10.48550/arXiv.1811.04968
Botea A, Kishimoto A, Marinescu R (2018) On the Complexity of Quantum Circuit Compilation. Proceedings of the International Symposium on Combinatorial Search 9(1):138–142. https://doi.org/10.1609/socs.v9i1.18463
Bravyi S, Smith G, Smolin JA (2016) Trading Classical and Quantum Computational Resources. Phys. Rev. X 6(2):021043. https://doi.org/10.1103/PhysRevX.6.021043
Broers, L., Mathey, L.: Reducing Barren Plateaus in Quantum Algorithm Protocols. http://arxiv.org/abs/2111.08085arXiv:2111.08085 (2021). 10.48550/arXiv.2111.08085
Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S.C., Endo, S., Fujii, K., McClean, J.R., Mitarai, K., Yuan, X., Cincio, L., Coles, P.J.: Variational quantum algorithms. Nature Reviews Physics, 625–644 (2021). 10.1038/s42254-021-00348-9
Cerezo M, Sone A, Volkoff T, Cincio L, Coles PJ (2021) Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature Communications 12(1):1791. https://doi.org/10.1038/s41467-021-21728-w
Cong I, Choi S, Lukin MD (2019) Quantum convolutional neural networks. Nature Physics 15(12):1273–1278. https://doi.org/10.1038/s41567-019-0648-8
Eddins A, Motta M, Gujarati TP, Bravyi S, Mezzacapo A, Hadfield C, Sheldon S (2022) Doubling the size of quantum simulators by entanglement forging. PRX Quantum 3:010309. https://doi.org/10.1103/PRXQuantum.3.010309
Farhi, E., Goldstone, J., Gutmann, S.: A Quantum Approximate Optimization Algorithm. http://arxiv.org/abs/1411.4028arXiv:1411.4028 (2014)
Farhi, E., Neven, H.: Classification with Quantum Neural Networks on Near Term Processors. http://arxiv.org/abs/1802.06002arXiv:1802.06002 (2018)
Fujii K, Mizuta K, Ueda H, Mitarai K, Mizukami W, Nakagawa YO (2022) Deep Variational Quantum Eigensolver: A Divide-And-Conquer Method for Solving a Larger Problem with Smaller Size Quantum Computers. PRX Quantum 3(1):010346. https://doi.org/10.1103/PRXQuantum.3.010346
Grant, E., Ostaszewski, M., Wossnig, L., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019). 10.22331/q-2019-12-09-214
Grant E, Benedetti M, Cao S, Hallam A, Lockhart J, Stojevic V, Green AG, Severini S (2018) Hierarchical quantum classifiers. npj Quantum. Information 4(1):17–19. https://doi.org/10.1038/s41534-018-0116-9
Haferkamp, J., Faist, P., Kothakonda, N.B.T., Eisert, J., Yunger Halpern, N.: Linear growth of quantum circuit complexity. Nature Physics 18(5), 528–532 (2022). 10.1038/s41567-022-01539-6
Holmes Z, Sharma K, Cerezo M, Coles PJ (2022) Connecting Ansatz Expressibility to Gradient Magnitudes and Barren Plateaus. PRX Quantum 3(1):010313. https://doi.org/10.1103/PRXQuantum.3.010313
Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow JM, Gambetta JM (2017) Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549(7671):242–246. https://doi.org/10.1038/nature23879
Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. http://arxiv.org/abs/1412.6980arXiv:1412.6980 (2017)
Larocca, M., Ju, N., García-Martín, D., Coles, P.J., Cerezo, M.: Theory of overparametrization in quantum neural networks. arXiv:2109.11676 [quant-ph, stat] (2021). Accessed 2021-09-30
Liu H-Y, Sun T-P, Wu Y-C, Han Y-J, Guo G-P (2023) Mitigating barren plateaus with transfer-learning-inspired parameter initializations. New Journal of Physics 25(1):013039. https://doi.org/10.1088/1367-2630/acb58e
Marshall, S.C., Gyurik, C., Dunjko, V.: High Dimensional Quantum Learning With Small Quantum Computers. http://arxiv.org/abs/2203.13739arXiv:2203.13739 (2022). 10.48550/arXiv.2203.13739
McClean JR, Boixo S, Smelyanskiy VN, Babbush R, Neven H (2018) Barren plateaus in quantum neural network training landscapes. Nature Communications 9(1):4812. https://doi.org/10.1038/s41467-018-07090-4
Mitarai K, Negoro M, Kitagawa M, Fujii K (2018) Quantum circuit learning. Phys. Rev. A 98(3):032309. https://doi.org/10.1103/PhysRevA.98.032309
Ortiz Marrero C, Kieferová M, Wiebe N (2021) Entanglement-Induced Barren Plateaus. PRX. Quantum 2(4):040316. https://doi.org/10.1103/PRXQuantum.2.040316
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F.d., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019). https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
Patti TL, Najafi K, Gao X, Yelin SF (2021) Entanglement devised barren plateau mitigation. Phys. Rev. Research 3(3):033090. https://doi.org/10.1103/PhysRevResearch.3.033090
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12(85):2825–2830
Peng T, Harrow AW, Ozols M, Wu X (2020) Simulating Large Quantum Circuits on a Small Quantum Computer. Phys. Rev. Letters 125(15):150504. https://doi.org/10.1103/PhysRevLett.125.150504
Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020). 10.22331/q-2020-02-06-226
Perlin, M.A., Saleem, Z.H., Suchara, M., Osborn, J.C.: Quantum circuit cutting with maximum-likelihood tomography. npj Quantum Information 7(1), 1–8 (2021). 10.1038/s41534-021-00390-6
Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P.J., Aspuru-Guzik, A., O’Brien, J.L.: A variational eigenvalue solver on a photonic quantum processor. Nature Communications 5(1), 4213 (2014). 10.1038/ncomms5213
Pesah A, Cerezo M, Wang S, Volkoff T, Sornborger AT, Coles PJ (2021) Absence of Barren Plateaus in Quantum Convolutional Neural Networks. Phys. Rev. X 11(4):041011. https://doi.org/10.1103/PhysRevX.11.041011
Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2(July), 1–20 (2018). 10.22331/q-2018-08-06-79
Puchala, Z., Miszczak, J.A.: Symbolic integration with respect to the haar measure on the unitary groups. Bulletin of the Polish Academy of Sciences: Technical Sciences 65(No 1), 21–27 (2017). 10.1515/bpasts-2017-0003
Rad, A., Seif, A., Linke, N.M.: Surviving The Barren Plateau in Variational Quantum Circuits with Bayesian Learning Initialization. http://arxiv.org/abs/2203.02464arXiv:2203.02464 (2022). 10.48550/arXiv.2203.02464
Sack SH, Medina RA, Michailidis AA, Kueng R, Serbyn M (2022) Avoiding barren plateaus using classical shadows. PRX Quantum 3:020365. https://doi.org/10.1103/PRXQuantum.3.020365
Saleem, Z.H., Tomesh, T., Perlin, M.A., Gokhale, P., Suchara, M.: Quantum Divide and Conquer for Combinatorial Optimization and Distributed Computing. http://arxiv.org/abs/2107.07532arXiv:2107.07532 (2021). 10.48550/arXiv.2107.07532
Schatzki, L., Arrasmith, A., Coles, P.J., Cerezo, M.: Entangled Datasets for Quantum Machine Learning. http://arxiv.org/abs/2109.03400arXiv:2109.03400 (2021). 10.48550/arXiv.2109.03400
Schuld M, Bergholm V, Gogolin C, Izaac J, Killoran N (2019) Evaluating analytic gradients on quantum hardware. Phys. Rev. A 99(3):1–7. https://doi.org/10.1103/PhysRevA.99.032331
Tang, W., Tomesh, T., Suchara, M., Larson, J., Martonosi, M.: CutQC: Using Small Quantum Computers for Large Quantum Circuit Evaluations. Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, 473–486 (2021). 10.1145/3445814.3446758
Treinish, M., Gambetta, J., Nation, P., Kassebaum, P., qiskit-bot, Rodríguez, D.M., González, S.d.l.P., Hu, S., Krsulich, K., Zdanski, L., Garrison, J., Yu, J., Gacon, J., McKay, D., Gomez, J., Capelluto, L., Travis-S-IBM, Marques, M., Panigrahi, A., Lishman, J., lerongil, Rahman, R.I., Wood, S., Bello, L., Itoko, T., Singh, D., Drew, Arbel, E., Schwarm, J., Daniel, J.: Qiskit: An Open-source Framework for Quantum Computing. Zenodo (2022). 10.5281/zenodo.6403335. https://zenodo.org/record/6403335
Volkoff T, Coles PJ (2021) Large gradients via correlation in random parameterized quantum circuits. Quantum Science and Technology 6(2):025008. https://doi.org/10.1088/2058-9565/abd891
Wang S, Fontana E, Cerezo M, Sharma K, Sone A, Cincio L, Coles PJ (2021) Noise-induced barren plateaus in variational quantum algorithms. Nature Communications 12(1):6961. https://doi.org/10.1038/s41467-021-27045-6
Weidenfeller, J., Valor, L.C., Gacon, J., Tornow, C., Bello, L., Woerner, S., Egger, D.J.: Scaling of the quantum approximate optimization algorithm on superconducting qubit based hardware. Quantum 6, 870 (2022). 10.22331/q-2022-12-07-870
Wu, A., Li, G., Ding, Y., Xie, Y.: Mitigating Noise-Induced Gradient Vanishing in Variational Quantum Algorithm Training. arXiv:2111.13209 (2021)
Zhang, K., Hsieh, M.-H., Liu, L., Tao, D.: Gaussian initializations help deep variational quantum circuits escape from the barren plateau. http://arxiv.org/abs/2203.09376arXiv:2203.09376 (2022). 10.48550/arXiv.2203.09376
Zhang, K., Hsieh, M.-H., Liu, L., Tao, D.: Toward Trainability of Deep Quantum Neural Networks. http://arxiv.org/abs/2112.15002http://arxiv.org/abs/2112.15002arXiv:2112.15002 (2021)
Zhao, C., Gao, X.-S.: Analyzing the barren plateau phenomenon in training quantum neural networks with the ZX-calculus. Quantum 5, 466 (2021). 10.22331/q-2021-06-04-466