Khoa học công dân trong việc theo dõi động lực không gian và thời gian của véc tơ sốt rét liên quan đến các yếu tố rủi ro môi trường ở Ruhuha, Rwanda

Malaria Journal - Tập 20 Số 1
Marilyn Milumbu Murindahabi1, Arash Hoseni2, L C Corné Vreugdenhil2, Arnold J. H. van Vliet3, Jackie Umupfasoni4, Alphonse Mutabazi4, Emmanuel Hakizimana4, P. Marijn Poortvliet5, Léon Mutesa6, Willem Takken1, Constantianus J. M. Koenraadt1
1Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
2Laboratory of Geo-Information Science and Remote Sensing, Wageningen University & Research, Wageningen, The Netherlands
3Environmental Systems Analysis Group, Wageningen University & Research, Wageningen, The Netherlands
4Malaria and other Parasitic Diseases Division, Biomedical Center, Kigali, Rwanda
5Strategic Communication Group, Wageningen University & Research, Wageningen, The Netherlands
6College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda

Tóm tắt

Tóm tắtĐặt vấn đềNhư một phần trong nỗ lực ngăn ngừa và kiểm soát bệnh sốt rét, việc phân bổ và mật độ của muỗi sốt rét cần phải được theo dõi liên tục. Tài nguyên cho việc giám sát lâu dài các véc tơ sốt rét thường bị hạn chế. Mục tiêu của nghiên cứu là đánh giá giá trị của khoa học công dân trong việc cung cấp thông tin về các điểm nóng véc tơ sốt rét tiềm năng và các thông tin liên quan đến bệnh sốt rét khác, cũng như xác định các yếu tố dự đoán sự phong phú của véc tơ sốt rét trong một khu vực mà việc theo dõi muỗi định kỳ chưa được thiết lập để hỗ trợ giám sát véc tơ.Phương phápMột chương trình khoa học công dân kéo dài 1 năm để giám sát muỗi sốt rét đã được triển khai tại năm làng thuộc khu vực Ruhuha, huyện Bugesera, Rwanda. Tổng cộng, 112 công dân tình nguyện đã đăng ký và báo cáo dữ liệu hàng tháng về muỗi được thu thập trong môi trường xung quanh nhà của họ bằng cách sử dụng bẫy bằng carbon dioxide tự chế. Ngoài ra, họ cũng báo cáo về sự khó chịu do muỗi gây ra cũng như số lượng ca sốt rét đã được xác nhận trong hộ gia đình của họ.

Từ khóa


Tài liệu tham khảo

Ministry of Health. Rwanda malaria and neglected tropical diseases annual report 2018–2019, Kigali, Rwanda; 2019.

Karema C, Aregawi MW, Rukundo A, Kabayiza A, Mulindahabi M, Fall IS, et al. Trends in malaria cases, hospital admissions and deaths following scale-up of anti-malarial interventions, 2000–2010, Rwanda. Malar J. 2012;11:236.

PMI. President’s Malaria Initiative. Malaria operational plan: Rwanda FY 2019, Washington, D.C; 2019.

Ministry of Health. National Strategic plan for integrated vector management (2013–2017), Kigali, Rwanda; 2013.

Hakizimana E, Karema C, Munyakanage D, Githure J, Mazarati JB, Tongren JE, et al. Spatio-temporal distribution of mosquitoes and risk of malaria infection in Rwanda. Acta Trop. 2018;182:149–57.

WHO. Global vector control response 2017–2030. Geneva: World Health Organization; 2017.

WHO. World malaria report. Geneva: World Health Organization; 2019.

Fouet C, Kamdem C. Integrated mosquito management: is precision control a luxury or necessity? Trends Parasitol. 2018;35:85–95.

Hay SI, Sinka ME, Okara RM, Kabaria CW, Mbithi PM, Carolynn C, et al. Developing global maps of the dominant Anopheles vectors of human malaria. PLoS Med. 2010;7:e1000209.

Zahar AR. Vector bionomics in the epidemiology and control of malaria. Part I. The WHO African region and the southern WHO Eastern Mediterranean region. Geneva: World Health Organization; 1984.

WHO. The compendium of WHO malaria guidance: prevention, diagnosis, treatment, surveillance and elimination. Geneva: World Health Organization; 2019.

Carter R, Mendis KN, Roberts D. Spatial targeting of interventions against malaria. Bull World Health Organ. 2000;78:1401–11.

Sinka ME, Bangs MJ, Manguin S, Rubio-palis Y, Chareonviriyaphap T, Coetzee M, et al. A global map of dominant malaria vectors. Parasites Vectors. 2012;5:69.

Kampen H, Medlock JM, Vaux AG, Koenraadt CJ, van Vliet AJ, Bartumeus F, et al. Approaches to passive mosquito surveillance in the EU. Parasites Vectors. 2015;8:9.

Vogels CBF, van de Peppel LJJ, van Vliet AJH, Westenberg M, Ibañez-Justicia A, Stroo A, et al. Winter activity and aboveground hybridization between the two biotypes of the West Nile virus vector Culex pipiens. Vector-Borne Zoonotic Dis. 2015;15:619–26.

Jordan RC, Sorensen AE, Ladeau S. Citizen science as a tool for mosquito control. J Am Mosq Control Assoc. 2017;33:241–5.

Bartumeus F, Oltra A, Palmer JRB. Citizen science: a gateway for innovation in disease-carrying mosquito management? Trends Parasitol. 2018;34:727–9.

Bartumeus F, Costa GB, Eritja R, Kelly AH, Finda M, Lezaun J, et al. Sustainable innovation in vector control requires strong partnerships with communities. PLoS Negl Trop Dis. 2019;13:e0007204.

Palmer JRB, Oltra A, Collantes F, Delgado JA, Lucientes J, Delacour S, et al. Citizen science provides a reliable and scalable tool to track disease-carrying mosquitoes. Nat Commun. 2017;8:916.

Eritja R, Ruiz-arrondo I, Delacour-estrella S, Schaffner F, Álvarez-chachero J, Bengoa M, et al. First detection of Aedes japonicus in Spain: an unexpected finding triggered by citizen science. Parasites Vectors. 2019;12:53.

Oltra A, Palmer JRB, Bartumeus F. AtrapaelTigre.com: enlisting citizen-scientists in the war on tiger mosquitoes. In: European handbook of crowdsourced geographic information. Barcelona: Ubiquity Press; 2016. p. 295–308.

Kateera F, Ingabire CM, Hakizimana E, Kalinda P, Mens PF, Grobusch MP, et al. Malaria, anaemia and under-nutrition: three frequently co-existing conditions among preschool children in rural Rwanda. Malar J. 2015;14:440.

Ingabire CM, Hakizimana E, Rulisa A, Kateera F, Van Den Borne B, Muvunyi CM, et al. Community-based biological control of malaria mosquitoes using Bacillus thuringiensis var. israelensis (Bti) in Rwanda: community awareness, acceptance and participation. Malar J. 2017;16:399.

Kateera F. Determinants of malaria control in a rural community in Eastern Rwanda. Ph.D. thesis, Universiteit van Amsterdam; 2016.

Asingizwe D, Murindahabi MM, Koenraadt CJM, Poortvliet PM, Vliet AJH, Van, Ingabire CM, et al. Co-designing a citizen science program for malaria control in Rwanda. Sustainability. 2019;11:7012.

Gillies MT, Coetzee M. A supplement to the Anophelinae of Africa South of the Sahara. Publ S Afr Inst Med Res. 1987;55:63.

Service MW. Mosquito ecology: field sampling methods. New York: Elsevier; 1993. p. 1476.

Wirtz RA, Zavala F, Charoenvit Y, Campbell GH, Burkot TR, Schneider I, et al. Comparative testing of monoclonal antibodies against Plasmodium falciparum sporozoites for ELISA development. Bull World Health Organ. 1987;65:39–45.

Beier JC, Perkins PV, Wirtz RA, Koros J, Diggs D, Gargan TP, et al. Bloodmeal identification by direct enzyme-linked immunosorbent assay (ELISA), tested on Anopheles (Diptera: Culicidae) in Kenya. J Med Entomol. 1988;25:9–16.

Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520–9.

Geoscience Lab—landscape portal/Rwanda wetlands. 2015. Accessed Oct 29 2019. p. 1.

WorldPop.  School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Sc. 2020. www.worldpop.org.

Zhou G, Munga S, Minakawa N, Githeko AK, Yan G. Spatial relationship between adult malaria vector abundance and environmental factors in Western Kenya Highlands. Am J Trop Med Hyg. 2007;77:29–35.

Moss WJ, Hamapumbu H, Kobayashi T, Shields T, Kamanga A, Clennon J, et al. Use of remote sensing to identify spatial risk factors for malaria in a region of declining transmission: a cross-sectional and longitudinal community survey. Malar J. 2011;10:163.

Cleckner HL, Allen TR, Scott Bellows A. Remote sensing and modeling of mosquito abundance and habitats in Coastal Virginia, USA. Remote Sens. 2011;3:2663–81.

Kursah MB. GIS and correlation analysis of geo-environmental variables influencing malaria prevalence in the Saboba district of Northern Ghana. Ghana J Geogr. 2017;9:112–31.

Barták V. New computer program for digital terrain analysis. In: GIS Ostrava. Prague, Czech Republic; 2010. p. 20.

McFeeters SK. Using the normalized difference water index (NDWI) within a geographic information system to detect swimming pools for mosquito abatement: a practical approach. Remote Sens. 2013;5:3544–61.

Garnero G, Godone D. Comparisons between different interpolation techniques. Int Arch Photogramm Remote Sens Spat Inf Sci. 2013;40(5W3):139–44.

Sestelo M, Villanueva NM, Meira-Machado L, Roca-Pardiñas J, FWDselect. An R package for variable selection in regression models. R J. 2016;8:132–48.

Nyirakanani C, Chibvongodze R, Kariuki L, Habtu M, Masika M, Mukoko D, et al. Characterization of malaria vectors in Huye District, Southern Rwanda. Tanzan J Health Res. 2017;19:1–10.

Hakizimana E. Integrated vector management (IVM) as a tool for community empowerment towards malaria elimination in Rwanda. Ph.D. thesis, Wageningen University; 2019.

Ijumba JN, Lindsay SW. Impact of irrigation on malaria in Africa: paddies paradox. Med Vet Entomol. 2001;15:1–11.

Kibret S, Alemu Y, Boelee E, Tekie H, Alemu D, Petros B. The impact of a small-scale irrigation scheme on malaria transmission in Ziway area, Central Ethiopia. Trop Med Int Health. 2010;15:41–50.

Mboera LEG, Senkoro KP, Mayala BK, Rumisha SF, Rwegoshora RT, Mlozi MRS, et al. Spatio-temporal variation in malaria transmission intensity in five agro-ecosystems in Mvomero district, Tanzania. Geospat Health. 2010;4:167–78.

Frake AN, Namaona W, Walker ED, Messina JP. Estimating spatio-temporal distributions of mosquito breeding pools in irrigated agricultural schemes: a case study at the Bwanje Valley irrigation scheme. Malar J. 2020;19:38.

Lindsay SW, Jawara M, Paine K, Pinder M, Walraven GEL, Emerson PM. Changes in house design reduce exposure to malaria mosquitoes. Trop Med Int Health. 2003;8:512–7.

Benelli G, Beier JC. Current vector control challenges in the fight against malaria. Acta Trop. 2017;174:91–6.

Garba LC, Oyieke FA, Owino EA, Mwansat GS, Williams Chintem DGW. Molecular characterization and species composition of anopheline vectors of malaria along an altitudinal gradient on the highlands of Mambilla Plateau Northeast, Nigeria. Afr J Biol Sci. 2020;2:18.

Dida GO, Anyona DN, Abuom PO, Akoko D, Adoka SO, Matano A, et al. Spatial distribution and habitat characterization of mosquito species during the dry season along the Mara River and its tributaries, in Kenya and Tanzania. Infect Dis Poverty. 2018;7:2.