Cistrome Data Browser and Toolkit: analyzing human and mouse genomic data using compendia of ChIP‐seq and chromatin accessibility data

Quantitative Biology - Tập 8 Số 3 - Trang 267-276 - 2020
Rongbin Zheng1, Xin Dong1, Changxin Wan1, Xiaoying Shi1, Xiaoyan Zhang2, Clifford A. Meyer3
1<!--1--> Clinical Translational Research Center Shanghai Pulmonary Hospital School of Life Science and Technology Tongji University Shanghai 200433 China
2<!--2--> Department of Bioinformatics School of Life Science and Technology Tongji University Shanghai 200092 China
3<!--3--> Department of Data Science Dana‐Farber Cancer Institute and Harvard T.H. Chan School of Public Health Boston MA 02215 USA

Tóm tắt

The Cistrome Data Browser (DB) at the website (cistrome.org/db) provides about 56,000 published human and mouse ChIP‐seq, DNase‐seq, and ATAC‐seq chromatin profiles, which we have processed using uniform analysis and quality control pipelines. The Cistrome DB Toolkit at the website (dbtoolkit.cistrome.org) was developed to allow users to investigate fundamental questions using this data collection. In this tutorial, we describe how to use the Cistrome DB to search for publicly available chromatin profiles, to assess sample quality, to access peak results, to visualize signal intensities, to explore DNA sequence motifs, and to identify putative target genes. We also describe the use of the Toolkit module to seek the factors most likely to regulate a gene of interest, the factors that bind to a given genomic interval (enhancer, SNP, etc.), and samples that have significant peak overlaps with user‐defined peak sets. This tutorial guides biomedical researchers in the use of Cistrome DB resources to rapidly obtain valuable insights into gene regulatory questions

Từ khóa


Tài liệu tham khảo

10.1126/science.1141319

10.1038/nrg2641

10.1038/nrg3306

10.1101/pdb.prot5384

10.1038/nmeth.2688

10.1016/j.cell.2018.01.029

10.1038/nature11247

10.1038/nature14248

10.1093/nar/gks1193

10.1093/nar/gky1094

10.1038/s41588‐017‐0030‐7

10.1016/j.molcel.2012.10.019

10.1073/pnas.0904863106

10.1093/bfgp/ely002

10.1093/bioinformatics/btt761

10.1038/nrg1315

10.1186/s12859‐016‐1274‐4

10.1038/nprot.2013.150

10.1093/nar/gkz332

10.1038/nmeth.4556

10.1002/0471250953.bi0104s00

10.1093/nar/gkz348

10.1126/science.aav1898

10.1038/nrg3017

10.1093/bioinformatics/btp324

Marinov G. K., 2014, Large‐scale quality analysis of published ChIP‐seq data. G3: Genes, Genomes, Genetics, 4, 209

10.1186/gb-2008-9-9-r137

Siepel A., 2005, Statistics for Biology and Health

10.1101/gr.3715005

10.1093/bioinformatics/btr279

10.1093/nar/gkt1302

10.1038/nature14590

10.1038/s41467‐018‐07307‐6

10.1126/science.1229259

10.1073/pnas.1117405109