Circular dichroism of oriented α helices. I. Proof of the exciton theory

Journal of Chemical Physics - Tập 89 Số 4 - Trang 2531-2538 - 1988
G.A. Olah1, Huey W. Huang1
1Department of Physics, Rice University, Houston, Texas 77251 and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511

Tóm tắt

Moffitt’s exciton theory for α helices, an important cornerstone of the circular dichroism (CD) theory for biopolymers, was recently cast in doubt by a linear dichroism measurement of electric field oriented polypeptides [Yamaoka et al., J. Am Chem. Soc. 108, 4619 (1986)]. In particular the prediction that the polarization of an exciton split component at 208 nm should be parallel to the α-helical axis was not borne out. This revealed the inadequacy of previous experiments which used long polypeptides to prove the theory. We performed two experiments to measure the effect of orientation of α helices on CD, one with a short membrane peptide, alamethicin, oriented in defect-free multibilayers and another with long polypeptides oriented with electric field. We found the result of the experiment with alamethicin to be consistent with the exciton theory. An elaborate procedure was established to measure the CD of protein molecules embedded in lipid multibilayers with light incident on bilayers at various angles (the helical sections of alamethicin are perpendicularly embedded in bilayers). Thus we are able to measure the polarization of the 208 nm band and prove that it is indeed parallel to the α-helical axis. The problem of electric field oriented polypeptides is discussed in paper II.

Từ khóa


Tài liệu tham khảo

1956, J. Chem. Phys., 25, 467, 10.1063/1.1742946

1979, Biophys. J., 26, 427, 10.1016/S0006-3495(79)85263-7

1980, Biophys. J., 31, 53, 10.1016/S0006-3495(80)85040-5

1985, Biophys. J., 48, 957, 10.1016/S0006-3495(85)83859-5

1986, J. Am. Chem. Soc., 108, 4619, 10.1021/ja00275a057

1961, Proc. Natl. Acad. Sci. U.S.A., 47, 1985

1970, J. Polym. Sci. C, 31, 205, 10.1002/polc.5070310118

1972, J. Chem. Phys., 57, 3469, 10.1063/1.1678780

1987, Biophys. J., 51, 989, 10.1016/S0006-3495(87)83427-6

1969, Anal. Chem., 41, 82, 10.1021/ac60270a038

1970, J. Mol. Biol., 52, 521, 10.1016/0022-2836(70)90417-1

1974, Methods Membrane Biol., 1, 105

1957, Proc. Natl. Acad. Sci. U.S.A., 43, 723, 10.1073/pnas.43.8.723

1964, J. Am. Chem. Soc., 86, 297, 10.1021/ja01056a049

1967, J. Chem. Phys., 46, 4927, 10.1063/1.1840658

1969, J. Chem. Phys., 51, 4899, 10.1063/1.1671881

1970, J. Chem. Phys., 52, 3703, 10.1063/1.1673546

1972, Biopolymer, 11, 1041, 10.1002/bip.1972.360110509

1977, J. Polym. Sci. (Macromol. Rev.), 12, 181, 10.1002/pol.1977.230120104

1965, J. Am. Chem. Soc., 87, 218, 10.1021/ja01080a015

1979, J. Colloid Interface Sci., 70, 167, 10.1016/0021-9797(79)90021-3

1980, J. Chem. Phys., 72, 2515, 10.1063/1.439448

1976, Adv. Biophys., 9, 1

1970, Trans. Faraday Soc., 66, 1096

1977, J. Am. Chem. Soc., 99, 8469, 10.1021/ja00468a016

1968, Nature, 217, 713, 10.1038/217713a0

1972, Biochim. Biophys. Acta, 255, 1014, 10.1016/0005-2736(72)90415-4

1973, J. Membrane Biol., 14, 143, 10.1007/BF01868075

1982, Nature, 300, 325, 10.1038/300325a0

1983, J. Mol. Biol., 165, 757, 10.1016/S0022-2836(83)80279-4

1972, Acta. Chem. Scand., 26, 1762

1956, J. Phys. Chem., 60, 1619, 10.1021/j150546a005