Circular RNAs: diversity of form and function

RNA - Tập 20 Số 12 - Trang 1829-1842 - 2014
Erika Lasda1, Roy Parker1
1Department of Chemistry and Biochemistry Howard Hughes Medical Institute University of Colorado Boulder, Colorado 80309 USA

Tóm tắt

It is now clear that there is a diversity of circular RNAs in biological systems. Circular RNAs can be produced by the direct ligation of 5′ and 3′ ends of linear RNAs, as intermediates in RNA processing reactions, or by “backsplicing,” wherein a downstream 5′ splice site (splice donor) is joined to an upstream 3′ splice site (splice acceptor). Circular RNAs have unique properties including the potential for rolling circle amplification of RNA, the ability to rearrange the order of genomic information, protection from exonucleases, and constraints on RNA folding. Circular RNAs can function as templates for viroid and viral replication, as intermediates in RNA processing reactions, as regulators of transcription in cis, as snoRNAs, and as miRNA sponges. Herein, we review the breadth of circular RNAs, their biogenesis and metabolism, and their known and anticipated functions.

Từ khóa


Tài liệu tham khảo

10.4254/wjh.v5.i12.666

10.1002/1522-2683(200208)23:16<2549::AID-ELPS2549>3.0.CO;2-Q

2013, Hepatitis δ virus: a peculiar virus, Adv Virol, 2013, 560105

10.1016/0092-8674(80)90505-X

10.1016/j.molcel.2014.08.019

2014, miRNA sponges: soaking up miRNAs for regulation of gene expression, Wiley Interdiscip Rev RNA, 5, 317, 10.1002/wrna.1213

10.1371/journal.pgen.1001233

10.1016/0092-8674(93)90279-Y

10.1126/science.7536344

1992, Splicing with inverted order of exons occurs proximal to large introns, EMBO J, 11, 1095, 10.1002/j.1460-2075.1992.tb05148.x

1993, Mis-splicing yields circular RNA molecules, FASEB J, 7, 155, 10.1096/fasebj.7.1.7678559

10.1016/0378-1119(92)90167-N

10.1093/nar/gkr1009

10.1016/j.molcel.2014.03.045

10.1002/wrna.22

10.1016/0378-1119(95)00639-7

10.1016/j.cub.2010.08.052

10.1515/BC.1999.104

10.4161/rna.8.2.14238

10.1073/pnas.91.8.3117

10.1261/rna.043687.113

10.1016/0092-8674(81)90142-2

10.1186/s13059-014-0409-z

10.1016/0092-8674(80)90506-1

10.1038/emboj.2011.359

10.1038/nature11993

10.1158/1538-7445.AM2013-5609

10.1038/emboj.2013.53

10.1093/jhered/esj037

10.1261/rna.035667.112

10.1083/jcb.119.3.503

10.1016/0092-8674(82)90414-7

10.1093/emboj/20.17.4987

10.1080/713609236

10.1093/nar/gkl328

10.1038/ncb1274

10.3389/fgene.2013.00307

10.1016/S0968-0004(97)01113-4

10.1038/nature11928

10.1074/jbc.M602695200

10.1093/nar/18.22.6545

10.1016/S1097-2765(01)00300-8

10.1016/j.biochi.2012.02.020

10.1261/rna.5290903

10.1016/0092-8674(91)90244-S

1996, Exon circularization in mammalian nuclear extracts, RNA, 2, 603

10.1017/S135583829898061X

10.1093/nar/20.20.5357

10.1093/nar/20.20.5345

10.1016/0092-8674(84)90553-1

10.1261/rna.2118203

10.1371/journal.pone.0030733

10.1371/journal.pgen.1003777

10.1073/pnas.73.11.3852

10.1016/0147-619X(82)90007-5

2014, Circularly permuted tRNA genes: their expression and implications for their physiological relevance and development, Front Genet, 5, 63

10.1126/science.1145718

10.1073/pnas.0403520101

10.1093/hmg/8.3.493

10.3390/ijms15069331

10.1093/nar/gkl151

10.1093/nar/16.14.6597

10.1093/nar/30.4.921

10.1093/emboj/18.4.1003

2002, The group I-like ribozyme DiGIR1 mediates alternative processing of pre-rRNA transcripts in Didymium iridis, Eur J Biochem, 269, 5804, 10.1046/j.1432-1033.2002.03283.x

10.1038/nchembio.136

10.1074/jbc.M606744200

10.1093/nar/gkq622

10.1371/journal.pone.0090859

10.5483/BMBRep.2013.46.3.171

10.1073/pnas.93.13.6536

1997, Exon skipping and circular RNA formation in transcripts of the human cytochrome P-450 2C18 gene in epidermis and of the rat androgen binding protein gene in testis, Mol Cell Biol, 17, 2985, 10.1128/MCB.17.6.2985

10.1038/301578a0

10.1016/j.molcel.2013.08.017

2014, Complementary sequence-mediated exon circularization, Cell, 99, 99