CircRNA_09505 làm trầm trọng thêm viêm và tổn thương khớp ở chuột mô hình viêm khớp do collagen gây ra thông qua trục miR-6089/AKT1/NF-κB
Tóm tắt
Nhiều RNA vòng (circRNA) đã được liên quan đến bệnh sinh viêm khớp dạng thấp (RA); tuy nhiên, vẫn ít thông tin về chức năng và cơ chế phân tử ẩn giấu của chúng trong việc điều hòa miễn dịch và viêm nhiễm. Chúng tôi đã nghiên cứu vai trò và cơ chế tiềm ẩn của circRNA_09505 trong RA trong nghiên cứu này. PCR thời gian thực và việc phát hiện lai huỳnh quang tại chỗ (FISH) được sử dụng để ước lượng biểu hiện định lượng và vị trí của circRNA_09505 trong tế bào đại thực bào. Tác động thay đổi của circRNA_09505 đối với viêm được điều tra cả trong ống nghiệm và trong cơ thể sống thông qua việc sử dụng các mô hình tế bào đại thực bào và chuột bị viêm khớp do collagen (CIA). Phân tích luciferase và miễn dịch kết tủa protein liên kết RNA (RIP) được sử dụng để xác nhận mạng lưới ceRNA circRNA_09505/miR-6089 do phân tích sinh thông tin dự đoán. So với các mẫu đối chứng, biểu hiện của circRNA_09505 được tăng cường trong các tế bào đơn nhân máu ngoại vi (PBMCs) từ bệnh nhân RA. Sự phát triển và chu kỳ tế bào được thúc đẩy đáng kể khi circRNA_09505 được tăng cường trong tế bào đại thực bào, trong khi việc gõ bỏ circRNA_09505 làm ức chế sự phát triển của tế bào đại thực bào và tiến trình chu kỳ tế bào. Hơn nữa, circRNA_09505 có thể hoạt động như một miRNA sponge cho miR-6089 trong tế bào đại thực bào, và thúc đẩy sản xuất TNF-α, IL-6 và IL-12 thông qua cơ chế ceRNA. Hơn nữa, AKT1 là mục tiêu trực tiếp của miR-6089. CircRNA_09505 có thể thúc đẩy biểu hiện AKT1 bằng cách hoạt động như một miR-6089 sponge thông qua con đường tín hiệu IκBα/NF-κB trong tế bào đại thực bào. Điều thú vị nhất, việc gõ bỏ circRNA_09505 đã làm giảm đáng kể viêm khớp và viêm trong cơ thể sống ở chuột CIA. Dữ liệu này hỗ trợ giả thuyết rằng circRNA_09505 có thể hoạt động như một miR-6089 sponge và điều chỉnh viêm thông qua trục miR-6089/AKT1/NF-κB ở chuột CIA.
Từ khóa
#RNA vòng #viêm khớp dạng thấp #đại thực bào #cơ chế ceRNA #AKT1 #miR-6089Tài liệu tham khảo
Catrina, A. I., Joshua, V., Klareskog, L. & Malmstrom, V. Mechanisms involved in triggering rheumatoid arthritis. Immunol. Rev. 269, 162–174 (2016).
Klareskog, L., Lundberg, K. & Malmstrom, V. Autoimmunity in rheumatoid arthritis: citrulline immunity and beyond. Adv. Immunol. 118, 129–158 (2013).
Udalova, I. A., Mantovani, A. & Feldmann, M. Macrophage heterogeneity in the context of rheumatoid arthritis. Nat. Rev. Rheumatol. 12, 472–485 (2016).
Ma, W. T., Gao, F., Gu, K. & Chen, D. K. The role of monocytes and macrophages in autoimmune diseases: a comprehensive review. Front. Immunol. 10, 1140 (2019).
Piccolo, V. et al. Opposing macrophage polarization programs show extensive epigenomic and transcriptional cross-talk. Nat. Immunol. 18, 530–540 (2017).
Chen, W., Liu, D., Li, Q. Z. & Zhu, H. The function of ncRNAs in rheumatic diseases. Epigenomics 11, 821–833 (2019).
Chen, J. Q., Papp, G., Szodoray, P. & Zeher, M. The role of microRNAs in the pathogenesis of autoimmune diseases. Autoimmun. Rev. 15, 1171–1180 (2016).
Roy, S. & Awasthi, A. Emerging roles of noncoding RNAs in T cell differentiation and functions in autoimmune diseases. Int. Rev. Immunol. 38, 232–245 (2019).
Cosenza, S. et al. Pathogenic or therapeutic extracellular vesicles in rheumatic diseases: role of mesenchymal stem cell-derived vesicles. Int. J. Mol. Sci. 18, 889 (2017).
Tofino-Vian, M., Guillen, M. I. & Alcaraz, M. J. Extracellular vesicles: a new therapeutic strategy for joint conditions. Biochem. Pharmacol. 153, 134–146 (2018).
Zhou, Z., Sun, B., Huang, S. & Zhao, L. Roles of circular RNAs in immune regulation and autoimmune diseases. Cell Death Dis. 10, 503 (2019).
Zheng, F., Yu, X., Huang, J. & Dai, Y. Circular RNA expression profiles of peripheral blood mononuclear cells in rheumatoid arthritis patients, based on microarray chip technology. Mol. Med. Rep. 16, 8029–8036 (2017).
Li, B. et al. Hsa_circ_0001859 regulates ATF2 expression by functioning as an MiR-204/211 sponge in human rheumatoid arthritis. J. Immunol. Res. 2018, 9412387 (2018).
Xu, D. et al. Exosome-encapsulated miR-6089 regulates inflammatory response via targeting TLR4. J. Cell Physiol. 234, 1502–1511 (2019).
Mousavi, M. J. et al. Implications of the noncoding RNAs in rheumatoid arthritis pathogenesis. J. Cell Physiol. 234, 335–347 (2018).
Luo, Q. et al. Identification of circular RNAs hsa_circ_0044235 in peripheral blood as novel biomarkers for rheumatoid arthritis. Clin. Exp. Immunol. 194, 118–124 (2018).
Yang, X. et al. Aberrant dysregulated circular RNAs in the peripheral blood mononuclear cells of patients with rheumatoid arthritis revealed by RNA sequencing: novel diagnostic markers for RA. Scand. J. Clin. Lab. Investig. https://doi.org/10.1080/00365513.2019.1674004 (2019).
Salmena, L. et al. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146, 353–358 (2011).
Li, L. J. et al. Competitive endogenous RNA network: potential implication for systemic lupus erythematosus. Expert Opin. Ther. Targets 21, 639–648 (2017).
Karreth, F. A. & Pandolfi, P. ceRNA cross-talk in cancer: when ce-bling rivalries go awry. Cancer Discov. 3, 1113–1121 (2013).
Jiang, H. et al. Reconstruction and analysis of the lncRNA-miRNA-mRNA network based on competitive endogenous RNA reveal functional lncRNAs in rheumatoid arthritis. Mol. Biosyst. 13, 1182–1192 (2017).
Xie, Z. et al. PU.1 attenuates TNFalphainduced proliferation and cytokine release of rheumatoid arthritis fibroblastlike synoviocytes by regulating miR155 activity. Mol. Med. Rep. 17, 8349–8356 (2018).
Yan, S. et al. Long non-coding RNA HIX003209 promotes inflammation by sponging miR-6089 via TLR4/NF-kappaB signaling pathway in rheumatoid arthritis. Front. Immunol. 10, 2218 (2019).
Su, Q. & Lv, X. Revealing new landscape of cardiovascular disease through circular RNA-miRNA-mRNA axis. Genomics. https://doi.org/10.1016/j.ygeno.2019.10.006 (2019).
Cortes, R. & Forner, M. J. Circular RNAS: novel biomarkers of disease activity in systemic lupus erythematosus? Clin. Sci. 133, 1049–1052 (2019).
Jia, N. et al. CeRNA expression profiling identifies KIT-related circRNA-miRNA-mRNA networks in gastrointestinal stromal tumour. Front. Genet. 10, 825 (2019).
Zhang, Y., Li, X., Zhang, M. & Lv, K. Microarray analysis of circular RNA expression patterns in polarized macrophages. Int. J. Mol. Med. 39, 373–379 (2017).
Yang, X. et al. Silica-induced initiation of circular ZC3H4 RNA/ZC3H4 pathway promotes the pulmonary macrophage activation. FASEB J. 32, 3264–3277 (2018).
Deng, T. et al. Calcitonin generelated peptide induces IL6 expression in RAW264.7 macrophages mediated by mmu_circRNA_007893. Mol. Med. Rep. 16, 9367–9374 (2017).