Ciprofloxacin analogues: drug likeness, biological and molecular docking studies
Tóm tắt
Từ khóa
Tài liệu tham khảo
Dighe SN, Collet A (2020) Recent advances in DNA gyrase-targeted antimicrobial agents. Eur J Med Chem 199:112326. https://doi.org/10.1016/j.ejmech.2020.112326.
Zanni R, Galvez-Llompart M, Machuca J, Garcia-Domenech R, Recacha E, Pascual A, Rodriguez-Martinez JM, Galvez J (2017) Molecular topology: A new strategy for antimicrobial resistance control. Eur J Med Chem 137:233–246. https://doi.org/10.1016/j.ejmech.2017.05.055
Verderosa AD, de la Fuente-Núnez C, Mansour SC, Cao J, Lu TK, Hancock REW, Fairfull-Smith KE (2017) Ciprofloxacin-nitroxide hybrids with potential for biofilm control. Eur J Med Chem 138:590–601
Wang R, Yin X, Zhang Y, Yan W (2018) Design, synthesis and antimicrobial evaluation of propylene-tethered ciprofloxacin-isatin hybrids. Eur J Med Chem 156:580–586. https://doi.org/10.1016/j.ejmech.2018.07.025
Chrzanowska A, Roszkowski P, Bielenica, A, Olejarz W, Stępień, K, Struga M, (2020) Anticancer and antimicrobial effects of novel ciprofloxacin fatty acids conjugates. Eur J Med Chem 185:111810, https://doi.org/10.1016/j.ejmech.2019.111810.
Abdel-Aziz M, Park SE, El-Din G, Abuo-Rahma AA, Sayed MA, Kwon Y (2013) Novel N-4-piperazinyl-ciprofloxacin-chalcone hybrids: Synthesis, physicochemical properties, anticancer and topoisomerase I and II inhibitory activity. Eur J Med Chem 69:427–438. https://doi.org/10.1016/j.ejmech.2013.08.040
Dixit SK, Mishra N, Sharma M, Singh S, Agarwal A, Awasthi SK, Bhasin VK (2012) Synthesis and in vitro antiplasmodial activities of fluoroquinolone analogs. Eur J Med Chem 51:52–59. https://doi.org/10.1016/j.ejmech.2012.02.006
Hu YQ, Xu Z, Zhang S, Wu X, Ding JW, Lv ZS, Feng LS (2017) Recent developments of coumarin-containing derivatives and their anti-tubercular activity. Eur J Med Chem 136:122–130. https://doi.org/10.1016/j.ejmech.2017.05.004
Sriram D, Yogeeswari P, Senchani G, Banerjee D (2007) Newer tetracycline derivatives: synthesis, anti-HIV, antimycobacterial activities and inhibition of HIV-1 integrase. Bioorg Med Chem Lett 17:2372–2375. https://doi.org/10.1016/j.bmcl.2006.11.055
Hu YQ, Gao C, Zhang S, Xu L, Xu Z, Feng LS, Wu X, Zhao F (2017) Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur J Med Chem 139:22–47
Park CH, Lee J, Jung HY, Kim MJ, Lim SH, Yeo HT, Choi EC, Yoon EJ, Kim KW, Cha JH, Kim SH, Chang DJ, Kwon DY, Li F, Suh YG (2007) Identification, biological activity, and mechanism of the anti-ischemic quinolone analog. Bioorg Med Chem 15:6517–6526. https://doi.org/10.1016/j.bmc.2007.07.009
Sultana N, Saeed AM, Bushra SRS, Haroon U (2011) Synthesis, Characterization and Biological Evaluations of Ciprofloxacin Carboxamide Analogues. Bull Korean Chem Soc 32:483. https://doi.org/10.5012/bkcs.2011.32.2.483
Sharma PC, Jain A, Shahar Yar M, Pahwa R, Singh J, Goel S (2015) Synthesis and antibacterial evaluation of novel analogs of fluoroquinolones annulated with 6-substituted-2-aminobenzothiazoles. Arab J Chem 8:671–677. https://doi.org/10.1016/j.arabjc.2011.04.008
Rabbani MG, Islam MR (2020) Synthesis and Characterization of Some NH-Analogues of Ciprofloxacin on Antibacterial, Antifungal, and Cytotoxic Activities. J Sci Res 12:349–362. https://doi.org/10.3329/jsr.v12i3.42804
Zulfiqar A, Ahmed D, Fatima R, Yousuf S (2020) Green synthesis, urease inhibitory activity and antioxidant potential of 4-bromo -2-(((2′-chloro-4′-nitrophenyl)imino)methyl)phenol Schiff base. J Mol Structure 1202:127263, https://doi.org/10.1016/j.molstruc.2019.127263.
Shashikant VB, Kailash G, Mayuresh KR, Ajit AP, Aniket PS, Vinod JM (2008) Design, Synthesis and Evaluation of Antiinflammatory, Analgesic and Ulcerogenicity studies of Novel S-Substituted phenacyl-1,3,4-oxadiazole-2-thiol and Schiff bases of Diclofenac acid as Nonulcerogenic Derivatives. Bioorg Med Chem 16:1822–1831. https://doi.org/10.1016/j.bmc.2007.11.014
Zhang J, Wang X, Yang J, Guo L, Wang X, Song B, Dong W, Wang W (2020) Novel diosgenin derivatives containing 1,3,4-oxadiazole/thiadiazole moieties as potential antitumor agents: Design, synthesis and cytotoxic evaluation. Eur J Med Chem 186:111897. https://doi.org/10.1016/j.ejmech.2019.111897.
Maddila S, Nagaraju K, Jonnalagadda SB (2020) Synthesis and antimicrobial evaluation of novel pyrano[2,3-d]-pyrimidine bearing 1,2,3-triazoles. Chemical Data Collections. 28:100486, https://doi.org/10.1016/j.cdc.2020.100486.
Ningegowda R, Chandrashekharappa S, Singh V, Mohanlall V, Venugopala KN (2020) Chemical Data Collections 28:100431. https://doi.org/10.1016/j.cdc.2020.100431
Alodeani EA, Arshad M, Izhari MA (2015) Anti-uropathogenic activity, drug likeness, physicochemical and molecular docking assessment of (E-)-N’-(substitutedbenzylidene)-2-(quinolin-8-yloxy) acetohydrazide. Asian Pac J Trop Biomed 5:676–683. https://doi.org/10.1016/j.apjtb.2015.04.010
Arshad M, Bhat AR, Pokharel S, Kim JE, Lee EJ, Athar F, Choi I (2014) Synthesis, characterization and anticancer screening of some novel piperonyl–tetrazole derivatives. Eur J Med Chem 71:229–236. https://doi.org/10.1016/j.ejmech.2013.11.008
Arshad M (2020) Design, Drug-likeness, Synthesis, Characterization, Antimicrobial, Molecular Docking and MTT Assessment of 1,3-thiazolidin-4-one Bearing Piperonal and Pyrimidine Moieties. Russ J Bioorg Chem 46:599–611. https://doi.org/10.1134/S1068162020040056
Arshad M (2014) An insight to the synthetically obtained triazole possessing numerous biological activities. Int J Pharm Pharm Sci 6(9):16–23
Arshad M (2014)1, 3, 4-Oxadiazole nucleus with versatile pharmacological applications: A Review, International Journal of Pharmaceutical Sciences and Research. 5 (2014) 1000–1013. https://doi.org/10.13040/IJPSR.0975-8232.5(4).1000-13
Clinical and Laboratory Standards Institute, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically Approved Standard, Seventh ed. CLSI document M7-A7. Wayne, Pennsylvania, USA, 2006, pp. 1–49. https://clsi.org/media/1928/m07ed11_sample.pdf
Gupta MK, Neelakantan TV, Sanghamitra M, Tyagi RK, Dinda A, Maulik S, Mukhopadhyay CK (2006) Goswami SK (2006) An assessment of the role of reactive oxygen species and redox signaling in norepinephrine-induced apoptosis and hypertrophy of H9c2 cardiac myoblasts. Antioxid Redox Signal 8:1081–1093. https://doi.org/10.1089/ars.2006.8.1081
Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, vol. 65, pp. 55. https://doi.org/10.1016/0022-1759(83)90303-4
Mouilleron S, Badet-Denisot MA, Golinelli-Pimpaneau B (2008) Ordering of C-terminal loop and glutaminase domains of glucosamine-6-phosphate synthase promotes sugar ring opening and formation of the ammonia channel. J Mol Biol 377(4):1174–1185. https://doi.org/10.1016/j.abb.2010.08.008