Chromoanagenesis: a piece of the macroevolution scenario
Tóm tắt
Từ khóa
Tài liệu tham khảo
Holland AJ, Cleveland DW. Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements. Nat Med. 2012;18:1630–8.
Heng HHQ, Liu G, Bremer S, Ye KJ, Stevens J, Ye CJ. Clonal and non-clonal chromosome aberrations and genome variation and aberration. Genome. 2006;49:195–204.
Murphy WJ, Larkin DM, Everts-van der Wind A, Bourque G, Tesler G, Auvil L, et al. Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science. 2005;309:613–7.
Navarro A, Barton NH. Chromosomal speciation and molecular divergence--accelerated evolution in rearranged chromosomes. Science. 2003;300:321–4.
Heng HHQ. The genome-centric concept: resynthesis of evolutionary theory. BioEssays. 2009;31:512–25.
Pellestor F, Gatinois V, Puechberty J, Geneviève D, Lefort G, et al. Fertil Steril. 2014;102:1785–96.
Kloosterman WP, Guryev V, van Roosmalen M, Duran KJ, de Bruijn E, Bakker SCM, et al. Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Hum Mol Genet. 2011;20:1916–24.
Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ, et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell. 2011;144:27–40.
Cai H, Kumar N, Bagheri HC, von Mering C, Robinson MD, Baudis M. Chromothripsis-like patterns are recurring but heterogeneously distributed features in a survey of 22,347 cancer genome screens. BMC Genomics. 2014;15:82.
Weckselblatt B, Hermetz KE, Rudd MK. Unbalanced translocations arise from diverse mutational mechanisms including chromothripsis. Genome Res. 2015;25:937–47.
de Pagter MS, van Roosmalen MJ, Baas AF, Renkens I, Duran KJ, van Binsbergen E, et al. Chromothripsis in healthy individuals affects multiple protein-coding genes and can result in severe congenital abnormalities in offspring. Am J Hum Genet. 2015;96:651–6.
Macera MJ, Sobrino A, Levy B, Jobanputra V, Aggarwal V, Mills A, et al. Prenatal diagnosis of chromothripsis, with nine breaks characterized by karyotyping, FISH, microarray and whole-genome sequencing. Prenat Diagn. 2015;35:299–301.
Korbel JO, Campbell PJ. Criteria for inference of chromothripsis in cancer genomes. Cell. 2013;152:1226–36.
Storchová Z, Kloosterman WP. The genomic characteristics and cellular origin of chromothripsis. Curr Opin Cell Biol. 2016;40:106–13.
Crasta K, Ganem NJ, Dagher R, Lantermann AB, Ivanova EV, Pan Y, et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature. 2012;482:53–8.
Pellestor F. Chromothripsis: how does such a catastrophic event impact human reproduction? Hum Reprod Oxf Engl. 2014;29:388–93.
Ly P, Cleveland DW. Rebuilding chromosomes after catastrophe: emerging mechanisms of Chromothripsis. Trends Cell Biol. 2017;27:917–30.
Ly P, Brunner SF, Shoshani O, Kim DH, Lan W, Pyntikova T, et al. Chromosome segregation errors generate a diverse spectrum of simple and complex genomic rearrangements. Nat Genet. 2019;51:705–15.
Koltsova AS, Pendina AA, Efimova OA, Chiryaeva OG, Kuznetzova TV, Baranov VS. On the complexity of mechanisms and consequences of Chromothripsis: an update. Front Genet. 2019;10:393.
Hatch EM, Fischer AH, Deerinck TJ, Hetzer MW. Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell. 2013;154:47–60.
Zhang C-Z, Spektor A, Cornils H, Francis JM, Jackson EK, Liu S, et al. Chromothripsis from DNA damage in micronuclei. Nature. 2015;522:179–84.
Liu S, Kwon M, Mannino M, Yang N, Renda F, Khodjakov A, et al. Nuclear envelope assembly defects link mitotic errors to chromothripsis. Nature. 2018;561:551–5.
Guo X, Ni J, Liang Z, Xue J, Fenech MF, Wang X. The molecular origins and pathophysiological consequences of micronuclei: new insights into an age-old problem. Mutat Res. 2019;779:1–35.
Russo A, Degrassi F. Molecular cytogenetics of the micronucleus: still surprising. Mutat Res Genet Toxicol Environ Mutagen. 2018;836:36–40.
Liu P, Erez A, Nagamani SCS, Dhar SU, Kołodziejska KE, Dharmadhikari AV, et al. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell. 2011;146:889–903.
Lee JA, Carvalho CMB, Lupski JR. A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell. 2007;131:1235–47.
Hastings PJ, Ira G, Lupski JR. A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet. 2009;5:e1000327.
Venkatesan S, Natarajan AT, Hande MP. Chromosomal instability--mechanisms and consequences. Mutat Res Genet Toxicol Environ Mutagen. 2015;793:176–84.
Sabatini PJB, Ejaz R, Stavropoulos DJ, Mendoza-Londono R, Joseph-George AM. Stable transmission of an unbalanced chromosome 21 derived from chromoanasynthesis in a patient with a SYNGAP1 likely pathogenic variant. Mol Cytogenet. 2018;11:50.
Grochowski CM, Gu S, Yuan B, Tcw J, Brennand KJ, Sebat J, et al. Marker chromosome genomic structure and temporal origin implicate a chromoanasynthesis event in a family with pleiotropic psychiatric phenotypes. Hum Mutat. 2018;39:939–46.
Baca SC, Prandi D, Lawrence MS, Mosquera JM, Romanel A, Drier Y, et al. Punctuated evolution of prostate cancer genomes. Cell. 2013;153:666–77.
Shen MM. Chromoplexy: a new category of complex rearrangements in the cancer genome. Cancer Cell. 2013;23:567–9.
Bertelsen B, Nazaryan-Petersen L, Sun W, Mehrjouy MM, Xie G, Chen W, et al. A germline chromothripsis event stably segregating in 11 individuals through three generations. Genet Med Off J Am Coll Med Genet. 2016;18:494–500.
Anderson SE, Kamath A, Pilz DT, Morgan SM. A rare example of germ-line chromothripsis resulting in large genomic imbalance. Clin Dysmorphol. 2016;25:58–62.
Suzuki E, Shima H, Toki M, Hanew K, Matsubara K, Kurahashi H, et al. Complex X-chromosomal rearrangements in two women with ovarian dysfunction: implications of Chromothripsis/Chromoanasynthesis-dependent and -independent origins of complex genomic alterations. Cytogenet Genome Res. 2016;150:86–92.
Hattori A, Okamura K, Terada Y, Tanaka R, Katoh-Fukui Y, Matsubara Y, et al. Transient multifocal genomic crisis creating chromothriptic and non-chromothriptic rearrangements in prezygotic testicular germ cells. BMC Med Genet. 2019;12:77.
Luijten MNH, Lee JXT, Crasta KC. Mutational game changer: Chromothripsis and its emerging relevance to cancer. Mutat Res. 2018;777:29–51.
Zepeda-Mendoza CJ, Morton CC. The iceberg under water: unexplored complexity of Chromoanagenesis in congenital disorders. Am J Hum Genet. 2019;104:565–77.
Goldschmidt R. The Material Basis of Evolution. New Haven: Yale University Press, 1940. 436 p. $5.00. Sci Educ. 1940;24:407.
Theissen G. The proper place of hopeful monsters in evolutionary biology. Theory Biosci Theor Den Biowissenschaften. 2006;124:349–69.
Eldredge N& G. Punctuated equilibria: an alternative to phyletic gradualism // (1972) pp 82–115 in “Models in paleobiology”, edited by Schopf, TJM Freeman, Cooper & Co, San Francisco. [Internet]. 1972 [cited 2019 Aug 9]. Available from: http://archive.org/details/B-001-004-118
Akam M. Hox genes, homeosis and the evolution of segment identity: no need for hopeless monsters. Int J Dev Biol. 1998;42:445–51.
Hufton AL, Groth D, Vingron M, Lehrach H, Poustka AJ, Panopoulou G. Early vertebrate whole genome duplications were predated by a period of intense genome rearrangement. Genome Res. 2008;18:1582–91.
Chan C, Jayasekera S, Kao B, Páramo M, von Grotthuss M, Ranz JM. Remodelling of a homeobox gene cluster by multiple independent gene reunions in Drosophila. Nat Commun. 2015;6:6509.
Sacerdot C, Louis A, Bon C, Berthelot C, Roest CH. Chromosome evolution at the origin of the ancestral vertebrate genome. Genome Biol. 2018;19:166.
Hoelzer GA, Smith E, Pepper JW. On the logical relationship between natural selection and self-organization. J Evol Biol. 2006;19:1785–94.
Heng HHQ, Liu G, Stevens JB, Bremer SW, Ye KJ, Abdallah BY, et al. Decoding the genome beyond sequencing: the new phase of genomic research. Genomics. 2011;98:242–52.
Ye CJ, Stilgenbauer L, Moy A, Liu G, Heng HH. What is karyotype coding and why is genomic topology important for Cancer and evolution? Front Genet. 2019;10:1082.
Theissen G. Saltational evolution: hopeful monsters are here to stay. Theory Biosci Theor Den Biowissenschaften. 2009;128:43–51.
Long CA. Evolution of mammalian cheek pouches and a possibly discontinuous origin of a higher taxon (Geomyoidea). Am Nat. 1976;110:1093–7.
Herrel A, Huyghe K, Vanhooydonck B, Backeljau T, Breugelmans K, Grbac I, et al. Rapid large-scale evolutionary divergence in morphology and performance associated with exploitation of a different dietary resource. Proc Natl Acad Sci U S A. 2008;105:4792–5.
Mehring C, Akselrod M, Bashford L, Mace M, Choi H, Blüher M, et al. Augmented manipulation ability in humans with six-fingered hands. Nat Commun. 2019;10:2401.
Zattara EE, Macagno ALM, Busey HA, Moczek AP. Development of functional ectopic compound eyes in scarabaeid beetles by knockdown of orthodenticle. Proc Natl Acad Sci U S A. 2017;114:12021–6.
Rieseberg LH, Archer MA, Wayne RK. Transgressive segregation, adaptation and speciation. Heredity. 1999;83(Pt 4):363–72.
Dittrich-Reed DR, Fitzpatrick BM. Transgressive hybrids as hopeful monsters. Evol Biol. 2013;40:310–5.
Liu G, Stevens JB, Horne SD, Abdallah BY, Ye KJ, Bremer SW, et al. Genome chaos: survival strategy during crisis. Cell Cycle Georget Tex. 2014;13:528–37.
Ly P, Teitz LS, Kim DH, Shoshani O, Skaletsky H, Fachinetti D, et al. Selective Y centromere inactivation triggers chromosome shattering in micronuclei and repair by non-homologous end joining. Nat Cell Biol. 2017;19:68–75.
Forment JV, Kaidi A, Jackson SP. Chromothripsis and cancer: causes and consequences of chromosome shattering. Nat Rev Cancer. 2012;12:663–70.
Willis NA, Rass E, Scully R. Deciphering the code of the Cancer genome: mechanisms of chromosome rearrangement. Trends Cancer. 2015;1:217–30.
Notta F, Chan-Seng-Yue M, Lemire M, Li Y, Wilson GW, Connor AA, et al. A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns. Nature. 2016;538:378–82.
McDermott DH, Gao J-L, Liu Q, Siwicki M, Martens C, Jacobs P, et al. Chromothriptic cure of WHIM syndrome. Cell. 2015;160:686–99.
Fukami M, Shima H, Suzuki E, Ogata T, Matsubara K, Kamimaki T. Catastrophic cellular events leading to complex chromosomal rearrangements in the germline. Clin Genet. 2017;91:653–60.
Carbone L, Harris RA, Gnerre S, Veeramah KR, Lorente-Galdos B, Huddleston J, et al. Gibbon genome and the fast karyotype evolution of small apes. Nature. 2014;513:195–201.
Tan EH, Henry IM, Ravi M, Bradnam KR, Mandakova T, Marimuthu MP, et al. Catastrophic chromosomal restructuring during genome elimination in plants. eLife. 2015;4. https://doi.org/10.7554/eLife.
Carbonell-Bejerano P, Royo C, Torres-Pérez R, Grimplet J, Fernandez L, Franco-Zorrilla JM, et al. Catastrophic unbalanced genome rearrangements cause somatic loss of berry color in grapevine. Plant Physiol. 2017;175:786–801.
Itani OA, Flibotte S, Dumas KJ, Guo C, Blumenthal T, Hu PJ. N-Ethyl-N-Nitrosourea (ENU) Mutagenesis Reveals an Intronic Residue Critical for Caenorhabditis elegans 3′ Splice Site Function in Vivo. G3 Bethesda Md. 2016;6:1751–6.
Anand RP, Tsaponina O, Greenwell PW, Lee C-S, Du W, Petes TD, et al. Chromosome rearrangements via template switching between diverged repeated sequences. Genes Dev. 2014;28:2394–406.
Blanc-Mathieu R, Krasovec M, Hebrard M, Yau S, Desgranges E, Martin J, et al. Population genomics of picophytoplankton unveils novel chromosome hypervariability. Sci Adv. 2017;3:e1700239.
Zhang C-Z, Leibowitz ML, Pellman D. Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements. Genes Dev. 2013;27:2513–30.
Leibowitz ML, Zhang C-Z, Pellman D. Chromothripsis: a new mechanism for rapid karyotype evolution. Annu Rev Genet. 2015;49:183–211.
Faria R, Navarro A. Chromosomal speciation revisited: rearranging theory with pieces of evidence. Trends Ecol Evol. 2010;25:660–9.
Coyne JA. A test of the role of meiotic drive in fixing a pericentric inversion. Genetics. 1989;123:241–3.
Dyer KA, Charlesworth B, Jaenike J. Chromosome-wide linkage disequilibrium as a consequence of meiotic drive. Proc Natl Acad Sci U S A. 2007;104:1587–92.
Lupiáñez DG, Spielmann M, Mundlos S. Breaking TADs: how alterations of chromatin domains result in disease. Trends Genet TIG. 2016;32:225–37.
Gonzalez-Sandoval A, Gasser SM. On TADs and LADs: spatial control over gene expression. Trends Genet TIG. 2016;32:485–95.
Ghavi-Helm Y, Jankowski A, Meiers S, Viales RR, Korbel JO, Furlong EEM. Highly rearranged chromosomes reveal uncoupling between genome topology and gene expression. Nat Genet. 2019;51:1272–82.
Delaneau O, Zazhytska M, Borel C, Giannuzzi G, Rey G, Howald C, et al. Chromatin three-dimensional interactions mediate genetic effects on gene expression. Science. 2019;364(6439). https://doi.org/10.1126/science.aat8266.
Pellestor F. Chromoanagenesis: cataclysms behind complex chromosomal rearrangements. Mol Cytogenet. 2019;12:6.
Gorelick R, Heng HHQ. Sex reduces genetic variation: a multidisciplinary review. Evol Int J Org Evol. 2011;65:1088–98.
Dutrillaux B. Chromosomal evolution in primates: tentative phylogeny from Microcebus murinus (Prosimian) to man. Hum Genet. 1979;48:251–314.
Britton-Davidian J, Catalan J, da Graça RM, Ganem G, Auffray JC, Capela R, et al. Rapid chromosomal evolution in island mice. Nature. 2000;403:158.
Yunis JJ, Sawyer JR, Dunham K. The striking resemblance of high-resolution G-banded chromosomes of man and chimpanzee. Science. 1980;208:1145–8.
Newman TL, Tuzun E, Morrison VA, Hayden KE, Ventura M, McGrath SD, et al. A genome-wide survey of structural variation between human and chimpanzee. Genome Res. 2005;15:1344–56.
Pevzner P, Tesler G. Genome rearrangements in mammalian evolution: lessons from human and mouse genomes. Genome Res. 2003;13:37–45.
Dennis MY, Harshman L, Nelson BJ, Penn O, Cantsilieris S, Huddleston J, et al. The evolution and population diversity of human-specific segmental duplications. Nat Ecol Evol. 2017;1:69.
Crombach A, Hogeweg P. Chromosome rearrangements and the evolution of genome structuring and adaptability. Mol Biol Evol. 2007;24:1130–9.
Nazaryan-Petersen L, Bertelsen B, Bak M, Jønson L, Tommerup N, Hancks DC, et al. Germline Chromothripsis driven by L1-mediated Retrotransposition and Alu/Alu homologous recombination. Hum Mutat. 2016;37:385–95.
Klein SJ, O’Neill RJ. Transposable elements: genome innovation, chromosome diversity, and centromere conflict. Chromosome Res Int J Mol Supramol Evol Asp Chromosome Biol. 2018;26:5–23.
Platt RN, Vandewege MW, Ray DA. Mammalian transposable elements and their impacts on genome evolution. Chromosome Res Int J Mol Supramol Evol Asp Chromosome Biol. 2018;26:25–43.
Meyer TJ, Held U, Nevonen KA, Klawitter S, Pirzer T, Carbone L, et al. The flow of the gibbon LAVA element is facilitated by the LINE-1 Retrotransposition machinery. Genome Biol Evol. 2016;8:3209–25.
Deakin JE. Chromosome evolution in marsupials. Genes (Basel). 2018;9(2). https://doi.org/10.3390/genes9020072.
Romanenko SA, Serdyukova NA, Perelman PL, Pavlova SV, Bulatova NS, Golenishchev FN, et al. Intrachromosomal rearrangements in rodents from the perspective of comparative region-specific painting. Genes (Basel). 2017;8(9). https://doi.org/10.3390/genes8090215.
Ruban A, Schmutzer T, Scholz U, Houben A. How next-generation sequencing has aided our understanding of the sequence composition and origin of B chromosomes. Genes (Basel). 2017;8(11). https://doi.org/10.3390/genes8110294.
Becker SED, Thomas R, Trifonov VA, Wayne RK, Graphodatsky AS, Breen M. Anchoring the dog to its relatives reveals new evolutionary breakpoints across 11 species of the Canidae and provides new clues for the role of B chromosomes. Chromosome Res Int J Mol Supramol Evol Asp Chromosome Biol. 2011;19:685–708.
Nie W, Wang J, Su W, Wang D, Tanomtong A, Perelman PL, et al. Chromosomal rearrangements and karyotype evolution in carnivores revealed by chromosome painting. Heredity. 2012;108:17–27.
Wilson BA, Foy SG, Neme R, Masel J. Young genes are highly disordered as predicted by the preadaptation hypothesis of De novo gene birth. Nat Ecol Evol. 2017;1:0146.
Slijepcevic P. Genome dynamics over evolutionary time: “C-value enigma” in light of chromosome structure. Mutat Res Genet Toxicol Environ Mutagen. 2018;836:22–7.