Choroid plexus-selective inactivation of adenosine A2A receptors protects against T cell infiltration and experimental autoimmune encephalomyelitis

Springer Science and Business Media LLC - Tập 19 - Trang 1-15 - 2022
Wu Zheng1,2, Yijia Feng3, Zhenhai Zeng1,2, Mengqian Ye3, Mengru Wang1,2, Xin Liu1,2, Ping Tang1,2, Huiping Shang1,2, Xiaoting Sun1,2, Xiangxiang Lin3, Muran Wang1,3, Zhengzheng Li3, Yiyun Weng3, Wei Guo1,2, Sergii Vakal1,2, Jiang-fan Chen1,2
1Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
2State Key Laboratory of Optometry and Vision Science, Wenzhou, China
3Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China

Tóm tắt

Multiple sclerosis (MS) is one of the most common autoimmune disorders characterized by the infiltration of immune cells into the brain and demyelination. The unwanted immunosuppressive side effect of therapeutically successful natalizumab led us to focus on the choroid plexus (CP), a key site for the first wave of immune cell infiltration in experimental autoimmune encephalomyelitis (EAE), for the control of immune cells trafficking. Adenosine A2A receptor (A2AR) is emerging as a potential pharmacological target to control EAE pathogenesis. However, the cellular basis for the A2AR-mediated protection remains undetermined. In the EAE model, we assessed A2AR expression and leukocyte trafficking determinants in the CP by immunohistochemistry and qPCR analyses. We determined the effect of the A2AR antagonist KW6002 treatment at days 8–12 or 8–14 post-immunization on T cell infiltration across the CP and EAE pathology. We determined the critical role of the CP-A2AR on T cell infiltration and EAE pathology by focal knock-down of CP-A2AR via intracerebroventricular injection of CRE-TAT recombinase into the A2ARflox/flox mice. In the cultured CP epithelium, we also evaluated the effect of overexpression of A2ARs or the A2AR agonist CGS21680 treatment on the CP permeability and lymphocytes migration. We found the specific upregulation of A2AR in the CP associated with enhanced CP gateway activity peaked at day 12 post-immunization in EAE mice. Furthermore, the KW6002 treatment at days 8–12 or 8–14 post-immunization reduced T cell trafficking across the CP and attenuated EAE pathology. Importantly, focal CP-A2AR knock-down attenuated the pathogenic infiltration of Th17+ cells across the CP via inhibiting the CCR6–CCL20 axis through NFκB/STAT3 pathway and protected against EAE pathology. Lastly, activation of A2AR in the cultured epithelium by A2AR overexpression or CGS21680 treatment increased the permeability of the CP epithelium and facilitated lymphocytes migration. These findings define the CP niche as one of the primary sites of A2AR action, whereby A2AR antagonists confer protection against EAE pathology. Thus, pharmacological targeting of the CP-A2AR represents a novel therapeutic strategy for MS by controlling immune cell trafficking across CP.

Tài liệu tham khảo

Reich D, Lucchinetti C, Calabresi P. Multiple sclerosis. N Engl J Med. 2018;378(2):169–80. https://doi.org/10.1056/NEJMra1401483. Dendrou C, Fugger L. Immunomodulation in multiple sclerosis: promises and pitfalls. Curr Opin Immunol. 2017;49:37–43. https://doi.org/10.1016/j.coi.2017.08.013. Thompson A, Ciccarelli O. Towards treating progressive multiple sclerosis. Nat Rev Neurol. 2020;16(11):589–90. https://doi.org/10.1038/s41582-020-00421-4. Polman C, O’Connor P, Havrdova E, Hutchinson M, Kappos L, Miller D, et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med. 2006;354(9):899–910. https://doi.org/10.1056/NEJMoa044397. Reboldi A, Coisne C, Baumjohann D, Benvenuto F, Bottinelli D, Lira S, et al. C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol. 2009;10(5):514–23. https://doi.org/10.1038/ni.1716. Breuer J, Korpos E, Hannocks M, Schneider-Hohendorf T, Song J, Zondler L, et al. Blockade of MCAM/CD146 impedes CNS infiltration of T cells over the choroid plexus. J Neuroinflammation. 2018;15(1):236. https://doi.org/10.1186/s12974-018-1276-4. Meeker RB, Williams K, Killebrew DA, Hudson LC. Cell trafficking through the choroid plexus. Cell Adh Migr. 2012;6(5):390–6. https://doi.org/10.4161/cam.21054. Cepok S, Jacobsen M, Schock S, Omer B, Jaekel S, Böddeker I, et al. Patterns of cerebrospinal fluid pathology correlate with disease progression in multiple sclerosis. Brain. 2001;124:2169–76. https://doi.org/10.1093/brain/124.11.2169. Serafini B, Columba-Cabezas S, Di Rosa F, Aloisi F. Intracerebral recruitment and maturation of dendritic cells in the onset and progression of experimental autoimmune encephalomyelitis. Am J Pathol. 2000;157(6):1991–2002. https://doi.org/10.1016/S0002-9440(10)64838-9. Baruch K, Schwartz M. CNS-specific T cells shape brain function via the choroid plexus. Brain Behav Immun. 2013;34:11–6. https://doi.org/10.1016/j.bbi.2013.04.002. Shechter R, Miller O, Yovel G, Rosenzweig N, London A, Ruckh J, et al. Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity. 2013;38(3):555–69. https://doi.org/10.1016/j.immuni.2013.02.012. Rissanen E, Virta J, Paavilainen T, Tuisku J, Helin S, Luoto P, et al. Adenosine A2A receptors in secondary progressive multiple sclerosis: a [(11)C]TMSX brain PET study. J Cereb Blood Flow Metab. 2013;33(9):1394–401. https://doi.org/10.1038/jcbfm.2013.85. Chen Y, Zhang Z, Zheng L, Wang L, Liu Y, Yin W, et al. The adenosine A receptor antagonist SCH58261 reduces macrophage/microglia activation and protects against experimental autoimmune encephalomyelitis in mice. Neurochem Int. 2019;129:104490. https://doi.org/10.1016/j.neuint.2019.104490. Wang T, Xi N, Chen Y, Shang X, Hu Q, Chen J, et al. Chronic caffeine treatment protects against experimental autoimmune encephalomyelitis in mice: therapeutic window and receptor subtype mechanism. Neuropharmacology. 2014;86:203–11. https://doi.org/10.1016/j.neuropharm.2014.06.029. Chen G, Chen Y, Wang X, Wu S, Yang H, Xu H, et al. Chronic caffeine treatment attenuates experimental autoimmune encephalomyelitis induced by guinea pig spinal cord homogenates in Wistar rats. Brain Res. 2010;1309:116–25. https://doi.org/10.1016/j.brainres.2009.10.054. Yao S, Li Z, Huang Q, Li F, Wang Z, Augusto E, et al. Genetic inactivation of the adenosine A(2A) receptor exacerbates brain damage in mice with experimental autoimmune encephalomyelitis. J Neurochem. 2012;123(1):100–12. https://doi.org/10.1111/j.1471-4159.2012.07807.x. Mills J, Kim D, Krenz A, Chen J, Bynoe M. A2A adenosine receptor signaling in lymphocytes and the central nervous system regulates inflammation during experimental autoimmune encephalomyelitis. J Immunol. 2012;188(11):5713–22. https://doi.org/10.4049/jimmunol.1200545. Mills J, Thompson L, Mueller C, Waickman A, Jalkanen S, Niemela J, et al. CD73 is required for efficient entry of lymphocytes into the central nervous system during experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. 2008;105(27):9325–30. https://doi.org/10.1073/pnas.0711175105. Mills J, Alabanza L, Mahamed D, Bynoe M. Extracellular adenosine signaling induces CX3CL1 expression in the brain to promote experimental autoimmune encephalomyelitis. J Neuroinflammation. 2012;9:193. https://doi.org/10.1186/1742-2094-9-193. Bastia E, Xu Y, Scibelli A, Day Y, Linden J, Chen J, et al. A crucial role for forebrain adenosine A(2A) receptors in amphetamine sensitization. Neuropsychopharmacology. 2005;30(5):891–900. https://doi.org/10.1038/sj.npp.1300630. Weaver A, Goncalves da Silva A, Nuttall R, Edwards D, Shapiro S, Rivest S, et al. An elevated matrix metalloproteinase (MMP) in an animal model of multiple sclerosis is protective by affecting Th1/Th2 polarization. FASEB J. 2005;19(12):1668–70. https://doi.org/10.1096/fj.04-2030fje. Kunis G, Baruch K, Rosenzweig N, Kertser A, Miller O, Berkutzki T, et al. IFN-gamma-dependent activation of the brain’s choroid plexus for CNS immune surveillance and repair. Brain. 2013;136(P11):3427–40. https://doi.org/10.1093/brain/awt259. Ingwersen J, Wingerath B, Graf J, Lepka K, Hofrichter M, Schröter F, et al. Dual roles of the adenosine A2a receptor in autoimmune neuroinflammation. J Neuroinflammation. 2016;13:48. https://doi.org/10.1186/s12974-016-0512-z. Kertser A, Baruch K, Deczkowska A, Weiner A, Croese T, Kenigsbuch M, et al. Corticosteroid signaling at the brain-immune interface impedes coping with severe psychological stress. Sci Adv. 2019;5(5):eaav4111. https://doi.org/10.1126/sciadv.aav4111. Chen J-F, Eltzschig HK, Fredholm BB. Adenosine receptors as drug targets—what are the challenges? Nat Rev Drug Discov. 2013;12(4):265–86. https://doi.org/10.1038/nrd3955. Luger D, Silver P, Tang J, Cua D, Chen Z, Iwakura Y, et al. Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category. J Exp Med. 2008;205(4):799–810. https://doi.org/10.1084/jem.20071258. Hauser S, Cree B. Treatment of multiple sclerosis: a review. The Am J Med. 2020;133(12):1380–90. https://doi.org/10.1016/j.amjmed.2020.05.049. Chen J, Cunha R. The belated US FDA approval of the adenosine A receptor antagonist istradefylline for treatment of Parkinson’s disease. Purinergic Signal. 2020;16(2):167–74. https://doi.org/10.1007/s11302-020-09694-2.