Cholinergic interneuron characteristics and nicotinic properties in the striatum

Wiley - Tập 53 Số 4 - Trang 590-605 - 2002
Fu‐Ming Zhou1, Charles J. Wilson2, John A. Dani3
1Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA.
2Cajal Neuroscience Research Center, Division of Life Sciences, University of Texas, San Antonio, Texas 78249
3Baylor college of Medicine;

Tóm tắt

Abstract

The neostriatum (dorsal striatum) is composed of the caudate and putamen. The ventral striatum is the ventral conjunction of the caudate and putamen that merges into and includes the nucleus accumbens and striatal portions of the olfactory tubercle. About 2% of the striatal neurons are cholinergic. Most cholinergic neurons in the central nervous system make diffuse projections that sparsely innervate relatively broad areas. In the striatum, however, the cholinergic neurons are interneurons that provide very dense local innervation. The cholinergic interneurons provide an ongoing acetylcholine (ACh) signal by firing action potentials tonically at about 5 Hz. A high concentration of acetylcholinesterase in the striatum rapidly terminates the ACh signal, and thereby minimizes desensitization of nicotinic acetylcholine receptors. Among the many muscarinic and nicotinic striatal mechanisms, the ongoing nicotinic activity potently enhances dopamine release. This process is among those in the striatum that link the two extensive and dense local arbors of the cholinergic interneurons and dopaminergic afferent fibers. During a conditioned motor task, cholinergic interneurons respond with a pause in their tonic firing. It is reasonable to hypothesize that this pause in the cholinergic activity alters action potential dependent dopamine release. The correlated response of these two broad and dense neurotransmitter systems helps to coordinate the output of the striatum, and is likely to be an important process in sensorimotor planning and learning. © 2002 Wiley Periodicals, Inc. J Neurobiol 53: 590–605, 2002

Từ khóa


Tài liệu tham khảo

10.1016/S0006-3223(99)00085-2

10.1038/72929

10.1016/0013-4694(60)90108-5

Albuquerque EX, 1997, Properties of neuronal nicotinic acetylcholine receptors: pharmacological characterization and modulation of synaptic function, J Pharmacol Exp Ther, 280, 1117

10.1002/cne.1186

10.1016/S0006-8993(98)00880-4

10.1111/j.1748-1716.1966.tb03317.x

10.1126/science.8023166

10.1152/jn.1995.73.3.1234

10.1523/JNEUROSCI.18-14-05180.1998

10.1523/JNEUROSCI.14-06-03969.1994

10.1126/science.279.5347.77

10.1016/S0166-2236(96)20050-5

Bennett BD, 2000, Intrinsic membrane properties underlying spontaneous tonic firing in neostriatal cholinergic interneurons, J Neuroci, 15, 8493

10.1523/JNEUROSCI.18-20-08539.1998

10.1523/JNEUROSCI.19-13-05586.1999

10.1523/JNEUROSCI.15-12-07821.1995

10.1016/S0896-6273(00)81056-9

10.1002/cne.903610312

10.1016/0306-4522(82)90159-2

Björklund A, 1984, Classical transmitters in the CNS, part I, 55

10.1016/S0896-6273(02)00627-X

10.1016/0306-4522(84)90165-9

10.1523/JNEUROSCI.06-11-03177.1986

10.1016/S0896-6273(00)80374-8

Butcher LL, 1984, Classical transmitters and transmitter receptors in the CNS, part II, 1

10.1016/S0166-2236(99)01501-5

10.1523/JNEUROSCI.22-04-01208.2002

10.1016/S1054-3589(08)60072-1

10.1111/j.1460-9568.1996.tb01565.x

10.1016/0306-4522(95)00507-2

10.1016/S0165-6147(00)01489-9

10.1016/0014-2999(90)90456-G

10.1016/S0006-3223(00)01011-8

10.1016/S0091-3057(01)00652-9

10.1016/S0896-6273(01)00379-8

10.1016/S0014-2999(00)00566-5

DeBoer P, 1996, Physiological release of striatal acetylcholine in vivo: modulation by D1 and D2 dopamine receptor subtypes, J Pharmacol Exp Ther, 277, 775

De RoverM SchoffelmeerANM KitsKS.2000.Cholinergic modulation of GABAergic and glutamatergic synaptic transmission in the nucleus accumbens (NAC) shell of the rat. The 10th Neuropharmacology Conference Abstracts p169.

10.1016/S0079-6123(00)25005-X

10.1016/S0301-0082(97)00050-6

10.1002/(SICI)1096-9861(19961111)375:2<167::AID-CNE1>3.0.CO;2-0

10.1007/978-3-662-06765-9_1

10.1016/S0014-2999(99)00372-6

10.1016/0006-8993(76)90669-7

10.1146/annurev.psych.48.1.649

10.1126/science.1060645

10.1523/JNEUROSCI.18-20-08228.1998

10.1016/0306-4522(84)90294-X

10.1124/mol.51.1.6

10.1152/jn.1999.81.3.1418

10.1523/JNEUROSCI.19-09-03629.1999

10.1113/jphysiol.2006.113050

10.1111/j.1749-6632.1999.tb11331.x

10.1523/JNEUROSCI.17-15-05972.1997

Goto Y, 2001, Synchronous activity in the hippocampus and nucleus accumbens in vivo, J Neurosci, 21, RC131, 10.1523/JNEUROSCI.21-04-j0003.2001

10.1016/S0165-0173(99)00049-1

10.1016/0006-8993(85)91524-0

10.1038/383713a0

10.1126/science.8091209

Grofová I, 1979, Types of striato‐nigral neurones labeled by retrograde transport of horeseradish peroxidase, Appl Neurophysiol, 42, 25

10.1523/JNEUROSCI.20-06-02369.2000

Hebb CO, 1957, Biochemical evidence for the neural function of acetylcholine, Physiol Rev, 37, 196, 10.1152/physrev.1957.37.2.196

10.1111/j.1469-7793.1999.769ab.x

Hernandez‐Lopez S, 2000, D2 dopamine receptors in striatal medium spiny neurons reduce L‐type Ca2+ currents and excitability via a novel PLC[beta]1‐IP3‐calcineurin‐signaling cascade, J Neurosci, 20, 8987, 10.1523/JNEUROSCI.20-24-08987.2000

10.1016/S0165-0173(99)00039-9

10.1523/JNEUROSCI.14-05-03351.1994

Hill JA, 1993, Immunocytochemical localization of a neuronal nicotinic receptor: the β2‐subunit, J Neurosci, 13, 1551, 10.1523/JNEUROSCI.13-04-01551.1993

10.1523/JNEUROSCI.15-01-00458.1995

Imperato A, 1993, Evidence that neuroleptics increase striatal acetylcholine release through stimulation of dopamine D1 receptors, J Pharmacol Exp Ther, 266, 557

10.1002/cne.1345

10.1016/S0166-2236(99)01471-X

10.1016/S0959-4388(99)80031-2

10.1016/0301-0082(86)90016-X

10.1038/nn962

10.1038/277093a0

10.1073/pnas.95.13.7731

10.1152/jn.1990.63.6.1277

10.1007/BF00228811

10.1152/jn.1996.75.1.142

10.1523/JNEUROSCI.21-05-01452.2001

Kölliker A, 1896

10.1038/8138

10.1523/JNEUROSCI.22-02-00529.2002

10.1523/JNEUROSCI.20-01-00375.2000

10.1056/NEJM199810153391607

10.1016/0306-4522(92)90293-B

Leontovich TA, 1954, Fine structure of subcortical ganglia, Z Neuropat Psikh, 54, 168

10.1073/pnas.90.19.8861

10.1007/BF02247415

10.1016/0006-2952(82)90057-0

10.1113/jphysiol.1941.sp003913

10.1016/S0896-6273(02)00625-6

10.1016/S0896-6273(00)00042-8

10.1038/19756

10.1152/jn.2001.85.2.960

10.1146/annurev.ph.57.030195.002513

10.1126/science.7569895

Mesulam M‐M, 2000, Principles of behavioral and cognitive neurology, 10.1093/oso/9780195134759.001.0001

10.1152/physrev.1998.78.1.189

10.1016/0301-0082(80)90018-0

10.1097/00001756-199306000-00002

10.1146/annurev.neuro.23.1.185

10.1002/(SICI)1096-9861(19960318)366:4<580::AID-CNE3>3.0.CO;2-0

Oorschot DE, 1998, Total number of rat striatal large interneurons and thalamic parafascicular neurons: a stereological study, Int Basal Ganglia Soc Abstr, 6, 66

10.1016/0301-0082(94)90025-6

10.1002/cne.902380305

10.1038/34413

10.1016/0006-8993(81)90843-X

10.1038/37120

10.1523/JNEUROSCI.20-07-j0003.2000

10.1523/JNEUROSCI.18-11-04106.1998

10.1523/JNEUROSCI.21-18-07247.2001

Ramon y Cajal S, 1911, Histologie du systeme nerveux de l'homme et des vertébrés

10.1007/s002210050876

Ravel S, 2001, Reward unpredictability inside and outside of a task context as a determinant of the responses of tonically active neurons in the monkey striatum, J Neurosci, 21, 5730, 10.1523/JNEUROSCI.21-15-05730.2001

10.1152/jn.1996.76.3.2083

10.1016/0306-4522(89)90168-1

10.1016/S0896-6273(00)80134-8

10.1111/j.1360-0443.1991.tb01816.x

10.1046/j.1460-9568.2000.00068.x

10.1016/S0306-4522(99)00487-X

10.1126/science.275.5306.1593

10.1111/j.1471-4159.1984.tb02818.x

10.1523/JNEUROSCI.13-02-00596.1993

10.1016/0166-2236(90)90106-K

10.1016/S0166-2236(99)01447-2

10.1002/1098-2396(20000915)37:4<252::AID-SYN2>3.0.CO;2-A

10.1113/jphysiol.1990.sp017989

10.1038/35041572

10.1002/cne.902840212

10.1038/35083500

10.1152/jn.1998.79.5.2568

West AR, 2002, Opposite influences of endogenous dopamine D1 and D2 receptor activation on activity states and electrophysiological properties of striatal neurons: studies combining in vivo intracellular recordings and reverse microdialysis, J Neurosci, 22, 294, 10.1523/JNEUROSCI.22-01-00294.2002

Wilson CJ, 1993, The generation of natural firing patterns in neostriatal neurons, Prog Brain Res, 99, 277, 10.1016/S0079-6123(08)61352-7

10.1007/BF00237197

10.1523/JNEUROSCI.10-02-00508.1990

10.1016/S0896-6273(00)81134-4

10.1016/S0166-2236(96)10073-4

10.1016/S0306-4522(98)00284-X

10.1016/0301-0082(91)90006-M

10.1016/S0306-4522(01)00039-2

10.1152/jn.1997.77.2.1003

10.1523/JNEUROSCI.16-08-02592.1996

10.1038/nn769