Chip Control Analysis in Low-Frequency Vibration-Assisted Drilling of Ti–6Al–4V Titanium Alloys
Tóm tắt
Từ khóa
Tài liệu tham khảo
Pervaiz, S., Anwar, S., Qureshi, I., & Ahmed, N. (2019). Recent advances in the machining of titanium alloys using minimum quantity lubrication (MQL) based techniques. International Journal of Precision Engineering and Manufacturing-Green Technology,6, 133–145. https://doi.org/10.1007/s40684-019-00033-4.
Nam, J., & Lee, S. W. (2018). Machinability of titanium alloy (Ti–6Al–4V) in environmentally-friendly micro-drilling process with nanofluid minimum quantity lubrication using nanodiamond particles. International Journal of Precision Engineering and Manufacturing-Green Technology,5, 29–35. https://doi.org/10.1007/s40684-018-0003-z.
Pecat, O., & Brinksmeier, E. (2014). Low damage drilling of CFRP/titanium compound materials for fastening. Procedia CIRP,13, 1–7. https://doi.org/10.1016/j.procir.2014.04.001.
Mellinger, J. C., Ozdoganlar, O. B., Devor, R. E., & Kapoor, S. G. (2002). Modeling chip-evacuation forces and prediction of chip-clogging in drilling. Journal of Manufacturing Science and Engineering, Transactions of the ASME,124, 605–614. https://doi.org/10.1115/1.1473146.
Brinksmeier, E., & Janssen, R. (2002). Drilling of multi-Layer composite materials consisting of carbon fiber reinforced plastics (CFRP), titanium and aluminum alloys. CIRP Annals - Manufacturing Technology,51, 87–90. https://doi.org/10.1016/S0007-8506(07)61472-3.
Shyha, I. S., Soo, S. L., Aspinwall, D. K., Bradley, S., Perry, R., Harden, P., et al. (2011). Hole quality assessment following drilling of metallic-composite stacks. International Journal of Machine Tools and Manufacture,51, 569–578. https://doi.org/10.1016/j.ijmachtools.2011.04.007.
Wang, C., Chen, Y., An, Q., Cai, X., Ming, W., & Chen, M. (2015). Drilling temperature and hole quality in drilling of CFRP/aluminum stacks using diamond coated drill. International Journal of Precision Engineering and Manufacturing,16, 1689–1697. https://doi.org/10.1007/s12541-015-0222-y.
Jawahir, I. S. (2014). Chip-forms, chip breakability and chip control. In CIRP encyclopedia of production engineering. https://doi.org/10.1007/978-3-642-20617-7.
Mizobuchi, A., Honda, K., & Ishida, T. (2017). Improved chip discharge in drilling of glass plate using back tapered electroplated diamond tool. International Journal of Precision Engineering and Manufacturing,18, 1197–1204. https://doi.org/10.1007/s12541-017-0140-2.
Mizobuchi, A., Aziz, M. S. A., Izamshah, R., & Ishida, T. (2018). Chip discharge performance of micro-hole drilling through a glass plate using an electroplated diamond tool with different drill bits. International Journal of Precision Engineering and Manufacturing,19, 1273–1280. https://doi.org/10.1007/s12541-018-0151-7.
Gao, Y., Wu, D., Dong, Y., Ma, X., & Chen, K. (2017). The method of aiming towards the normal direction for robotic drilling. International Journal of Precision Engineering and Manufacturing,18, 787–794. https://doi.org/10.1007/s12541-017-0094-4.
Deyuan, Z., & Lijiang, W. (1998). Investigation of chip in vibration drilling. International Journal of Machine Tools and Manufacture,38, 165–176. https://doi.org/10.1016/S0890-6955(97)00047-3.
Forestier, F., Gagnol, V., Ray, P., & Paris, H. (2012). Model-based cutting prediction for a self-vibratory drilling head—spindle system. International Journal of Machine Tools and Manufacture,52, 59–68. https://doi.org/10.1016/j.ijmachtools.2011.09.001.
Pecat, O., Paulsen, T., Katthöfer, P., Brinksmeier, E., & Fangmann, S. (2016) Vibration assisted drilling of aerospace materials. SAE technical paper 2016-01-2136. https://doi.org/10.4271/2016-01-2136.
Lee, P. A., Kim, Y., & Kim, B. H. (2015). Effect of low frequency vibration on micro EDM drilling. International Journal of Precision Engineering and Manufacturing,16, 2617–2622. https://doi.org/10.1007/s12541-015-0335-3.
Brinksmeier, E., Pecat, O., & Rentsch, R. (2015). Quantitative analysis of chip extraction in drilling of Ti6Al4V. CIRP Annals - Manufacturing Technology,64, 93–96. https://doi.org/10.1016/j.cirp.2015.04.064.
Ladonne, M., Landon, Y., Cahuc, O., Cherif, M., & K Nevez., J. Y. (2013). Modeling the chip morphology during vibrations assisted drilling of Ti–6Al–4V. Materials,6, 1–9. https://doi.org/10.3390/ma60x000x.
Kim, D. W., Lee, Y. S., Park, M. S., & Chu, C. N. (2009). Tool life improvement by peck drilling and thrust force monitoring during deep-micro-hole drilling of steel. International Journal of Machine Tools and Manufacture,49, 246–255. https://doi.org/10.1016/j.ijmachtools.2008.11.005.
Lonfier, J., & De Castelbajac, C. (2015). A comparison between regular and vibration-assisted drilling in CFRP/Ti6Al4V stack [J]. SAE International Journal of Materials and Manufacturing,8(1), 18–26.
Chen, Y. (1999). Drilling process modeling for new drilling process development. PhD thesis University of Michigan.
Heinemann, R., & Hinduja, S. (2012). A new strategy for tool condition monitoring of small diameter twist drills in deep-hole drilling. International Journal of Machine Tools and Manufacture,52, 69–76. https://doi.org/10.1016/j.ijmachtools.2011.09.002.
Heinemann, R., Hinduja, S., & Barrow, G. (2007). Use of process signals for tool wear progression sensing in drilling small deep holes. The International Journal of Advanced Manufacturing Technology,33, 243–250. https://doi.org/10.1007/s00170-006-0459-9.
Mellinger, J. C., Ozdoganlar, O. B., Devor, R. E., & Kapoor, S. G. (2003). Modeling chip-evacuation forces in drilling for various flute geometries. Journal of Manufacturing Science and Engineering, Transactions of the ASME,125, 405–415. https://doi.org/10.1115/1.1578671.
Furness, R. J., Tsao, T., Rankin, J. S., Muth, M. J., & Manes, K. W. (1999). Torque control for a form tool drilling operation.,7, 22–30. https://doi.org/10.1109/87.736745.
Kim, H., & Ahn, J. (2002). Chip disposal state monitoring in drilling using neural network based spindle motor power sensing. International Journal of Machine Tools and Manufacture,42, 1113–1119. https://doi.org/10.1016/S0890-6955(02)00059-7.
Ding, C., Lee, M., & Li, K. (2017). Low-cost camera based laser power monitoring and stabilizing for micro-hole drilling. International Journal of Precision Engineering and Manufacturing,18, 1205–1212. https://doi.org/10.1007/s12541-017-0141-1.
Klocke, F., Keitzel, G., & Veselovac, D. (2014). Innovative sensor concept for chip transport monitoring of gun drilling processes. Procedia CIRP,14, 460–465. https://doi.org/10.1016/j.procir.2014.03.096.
Ladonne, M., Cherif, M., Landon, Y., K Nevez, J., Cahuc, O., & De Castelbajac, C. (2015). Modelling the vibration-assisted drilling process: identification of influential phenomena. The International Journal of Advanced Manufacturing Technology,81, 1657–1666. https://doi.org/10.1007/s00170-015-7315-8.
Elhachimi, M., Torbaty, S., & Joyot, P. (1999). Mechanical modelling of high speed drilling. 1: predicting torque and thrust. International Journal of Machine Tools and Manufacture,39, 553–568. https://doi.org/10.1016/S0890-6955(98)00050-9.
Merchant, M. E. (1945). Mechanics of the metal cutting process. I. orthogonal cutting and a type 2 chip. Journal of Applied Physics,16, 267–275. https://doi.org/10.1063/1.1707586.
Kainth, G. S., & Gupta, R. C. (1974). Shear angle relationship with variable undeformed chip thickness. Journal of Engineering for Industry,96, 1272–1276. https://doi.org/10.1115/1.3438506.
Rukan, Z., & Chuanping, S. (2015). Vibration and force analysis of platanus acerifolia leaf model in wind. Journal of China Jiliang University,4, 416–422. https://doi.org/10.3969/j.issn.1004-1540.2015.04.006.
Batchelor, (1967). An introduction to fluid dynamics. Cambridge: Cambridge University Press.