Chip Control Analysis in Low-Frequency Vibration-Assisted Drilling of Ti–6Al–4V Titanium Alloys

Haojun Yang1, Yan Chen1, Jiuhua Xu1, Mathieu Ladonne2, Julian Lonfier2, Wenfeng Ding1
1Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, Jiangsu, China
2MITIS SAS, 44340, Bouguenais, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Pervaiz, S., Anwar, S., Qureshi, I., & Ahmed, N. (2019). Recent advances in the machining of titanium alloys using minimum quantity lubrication (MQL) based techniques. International Journal of Precision Engineering and Manufacturing-Green Technology,6, 133–145. https://doi.org/10.1007/s40684-019-00033-4.

Nam, J., & Lee, S. W. (2018). Machinability of titanium alloy (Ti–6Al–4V) in environmentally-friendly micro-drilling process with nanofluid minimum quantity lubrication using nanodiamond particles. International Journal of Precision Engineering and Manufacturing-Green Technology,5, 29–35. https://doi.org/10.1007/s40684-018-0003-z.

Pecat, O., & Brinksmeier, E. (2014). Low damage drilling of CFRP/titanium compound materials for fastening. Procedia CIRP,13, 1–7. https://doi.org/10.1016/j.procir.2014.04.001.

Mellinger, J. C., Ozdoganlar, O. B., Devor, R. E., & Kapoor, S. G. (2002). Modeling chip-evacuation forces and prediction of chip-clogging in drilling. Journal of Manufacturing Science and Engineering, Transactions of the ASME,124, 605–614. https://doi.org/10.1115/1.1473146.

Brinksmeier, E., & Janssen, R. (2002). Drilling of multi-Layer composite materials consisting of carbon fiber reinforced plastics (CFRP), titanium and aluminum alloys. CIRP Annals - Manufacturing Technology,51, 87–90. https://doi.org/10.1016/S0007-8506(07)61472-3.

Shyha, I. S., Soo, S. L., Aspinwall, D. K., Bradley, S., Perry, R., Harden, P., et al. (2011). Hole quality assessment following drilling of metallic-composite stacks. International Journal of Machine Tools and Manufacture,51, 569–578. https://doi.org/10.1016/j.ijmachtools.2011.04.007.

Wang, C., Chen, Y., An, Q., Cai, X., Ming, W., & Chen, M. (2015). Drilling temperature and hole quality in drilling of CFRP/aluminum stacks using diamond coated drill. International Journal of Precision Engineering and Manufacturing,16, 1689–1697. https://doi.org/10.1007/s12541-015-0222-y.

Jawahir, I. S. (2014). Chip-forms, chip breakability and chip control. In CIRP encyclopedia of production engineering. https://doi.org/10.1007/978-3-642-20617-7.

Mizobuchi, A., Honda, K., & Ishida, T. (2017). Improved chip discharge in drilling of glass plate using back tapered electroplated diamond tool. International Journal of Precision Engineering and Manufacturing,18, 1197–1204. https://doi.org/10.1007/s12541-017-0140-2.

Mizobuchi, A., Aziz, M. S. A., Izamshah, R., & Ishida, T. (2018). Chip discharge performance of micro-hole drilling through a glass plate using an electroplated diamond tool with different drill bits. International Journal of Precision Engineering and Manufacturing,19, 1273–1280. https://doi.org/10.1007/s12541-018-0151-7.

Gao, Y., Wu, D., Dong, Y., Ma, X., & Chen, K. (2017). The method of aiming towards the normal direction for robotic drilling. International Journal of Precision Engineering and Manufacturing,18, 787–794. https://doi.org/10.1007/s12541-017-0094-4.

Deyuan, Z., & Lijiang, W. (1998). Investigation of chip in vibration drilling. International Journal of Machine Tools and Manufacture,38, 165–176. https://doi.org/10.1016/S0890-6955(97)00047-3.

Forestier, F., Gagnol, V., Ray, P., & Paris, H. (2012). Model-based cutting prediction for a self-vibratory drilling head—spindle system. International Journal of Machine Tools and Manufacture,52, 59–68. https://doi.org/10.1016/j.ijmachtools.2011.09.001.

Pecat, O., Paulsen, T., Katthöfer, P., Brinksmeier, E., & Fangmann, S. (2016) Vibration assisted drilling of aerospace materials. SAE technical paper 2016-01-2136. https://doi.org/10.4271/2016-01-2136.

Lee, P. A., Kim, Y., & Kim, B. H. (2015). Effect of low frequency vibration on micro EDM drilling. International Journal of Precision Engineering and Manufacturing,16, 2617–2622. https://doi.org/10.1007/s12541-015-0335-3.

Brinksmeier, E., Pecat, O., & Rentsch, R. (2015). Quantitative analysis of chip extraction in drilling of Ti6Al4V. CIRP Annals - Manufacturing Technology,64, 93–96. https://doi.org/10.1016/j.cirp.2015.04.064.

Ladonne, M., Landon, Y., Cahuc, O., Cherif, M., & K Nevez., J. Y. (2013). Modeling the chip morphology during vibrations assisted drilling of Ti–6Al–4V. Materials,6, 1–9. https://doi.org/10.3390/ma60x000x.

Kim, D. W., Lee, Y. S., Park, M. S., & Chu, C. N. (2009). Tool life improvement by peck drilling and thrust force monitoring during deep-micro-hole drilling of steel. International Journal of Machine Tools and Manufacture,49, 246–255. https://doi.org/10.1016/j.ijmachtools.2008.11.005.

Lonfier, J., & De Castelbajac, C. (2015). A comparison between regular and vibration-assisted drilling in CFRP/Ti6Al4V stack [J]. SAE International Journal of Materials and Manufacturing,8(1), 18–26.

Chen, Y. (1999). Drilling process modeling for new drilling process development. PhD thesis University of Michigan.

Heinemann, R., & Hinduja, S. (2012). A new strategy for tool condition monitoring of small diameter twist drills in deep-hole drilling. International Journal of Machine Tools and Manufacture,52, 69–76. https://doi.org/10.1016/j.ijmachtools.2011.09.002.

Heinemann, R., Hinduja, S., & Barrow, G. (2007). Use of process signals for tool wear progression sensing in drilling small deep holes. The International Journal of Advanced Manufacturing Technology,33, 243–250. https://doi.org/10.1007/s00170-006-0459-9.

Mellinger, J. C., Ozdoganlar, O. B., Devor, R. E., & Kapoor, S. G. (2003). Modeling chip-evacuation forces in drilling for various flute geometries. Journal of Manufacturing Science and Engineering, Transactions of the ASME,125, 405–415. https://doi.org/10.1115/1.1578671.

Furness, R. J., Tsao, T., Rankin, J. S., Muth, M. J., & Manes, K. W. (1999). Torque control for a form tool drilling operation.,7, 22–30. https://doi.org/10.1109/87.736745.

Kim, H., & Ahn, J. (2002). Chip disposal state monitoring in drilling using neural network based spindle motor power sensing. International Journal of Machine Tools and Manufacture,42, 1113–1119. https://doi.org/10.1016/S0890-6955(02)00059-7.

Ding, C., Lee, M., & Li, K. (2017). Low-cost camera based laser power monitoring and stabilizing for micro-hole drilling. International Journal of Precision Engineering and Manufacturing,18, 1205–1212. https://doi.org/10.1007/s12541-017-0141-1.

Klocke, F., Keitzel, G., & Veselovac, D. (2014). Innovative sensor concept for chip transport monitoring of gun drilling processes. Procedia CIRP,14, 460–465. https://doi.org/10.1016/j.procir.2014.03.096.

Ladonne, M., Cherif, M., Landon, Y., K Nevez, J., Cahuc, O., & De Castelbajac, C. (2015). Modelling the vibration-assisted drilling process: identification of influential phenomena. The International Journal of Advanced Manufacturing Technology,81, 1657–1666. https://doi.org/10.1007/s00170-015-7315-8.

Elhachimi, M., Torbaty, S., & Joyot, P. (1999). Mechanical modelling of high speed drilling. 1: predicting torque and thrust. International Journal of Machine Tools and Manufacture,39, 553–568. https://doi.org/10.1016/S0890-6955(98)00050-9.

Merchant, M. E. (1945). Mechanics of the metal cutting process. I. orthogonal cutting and a type 2 chip. Journal of Applied Physics,16, 267–275. https://doi.org/10.1063/1.1707586.

Kainth, G. S., & Gupta, R. C. (1974). Shear angle relationship with variable undeformed chip thickness. Journal of Engineering for Industry,96, 1272–1276. https://doi.org/10.1115/1.3438506.

Rukan, Z., & Chuanping, S. (2015). Vibration and force analysis of platanus acerifolia leaf model in wind. Journal of China Jiliang University,4, 416–422. https://doi.org/10.3969/j.issn.1004-1540.2015.04.006.

Batchelor, (1967). An introduction to fluid dynamics. Cambridge: Cambridge University Press.

Yang, H., Chen, Y., & Xu, J. (2018). Evaluation of CFRP hole quality in low frequency vibration-assisted dry drilling of CFRP/Ti stacks. In ASME 2018 13th international manufacturing science and engineering conference, College Station, Texas, USA, 2018[C]. American Society of Mechanical Engineers.