Chinese hamster ovary cell line DXB-11: chromosomal instability and karyotype heterogeneity
Tóm tắt
Chinese hamster ovary cell lines, also known as CHO cells, represent a large family of related, yet quite different, cell lines which are metabolic mutants derived from the original cell line, CHO-ori. Dihydrofolate reductase-deficient DXB-11 cell line, one of the first CHO derivatives, serves as the host cell line for the production of therapeutic proteins. It is generally assumed that DXB-11 is identical to DUKX or CHO-DUK cell lines, but, to our knowledge, DXB-11 karyotype has not been described yet. Using differential staining approaches (G-, C-banding and Ag-staining), we presented DXB-11 karyotype and revealed that karyotypes of DXB-11 and CHO-DUK cells have a number of differences. Although the number of chromosomes is equal—20 in each cell line—DXB-11 has normal chromosomes of the 1st and 5th pairs as well as an intact chromosome 8. Besides, in DXB-11 line, chromosome der(Z9) includes the material of chromosomes X and 6, whereas in CHO-DUK it results from the translocation of chromosomes 1 and 6. Ag-positive nucleolar organizer regions were revealed in the long arms of chromosome del(4)(q11q12) and both chromosome 5 homologues, as well as in the short arms of chromosomes 8 and add(8)(q11). Only 19 from 112 (16.96%) DXB-11 cells display identical chromosome complement accepted as the main structural variant of karyotype. The karyotype heterogeneity of all the rest of cells (93, 83.04%) occurs due to clonal and nonclonal additional structural rearrangements of chromosomes. Estimation of the frequency of chromosome involvement in these rearrangements allowed us to reveal that chromosomes 9, der(X)t(X;3;4), del(2)(p21p23), del(2)(q11q22) /Z2, der(4) /Z7, add(6)(p11) /Z8 are the most stable, whereas mar2, probably der(10), is the most unstable chromosome. A comparative analysis of our own and literary data on CHO karyotypes allowed to designate conservative chromosomes, both normal and rearranged, that remain unchanged in different CHO cell lines, as well as variable chromosomes that determine the individuality of karyotypes of CHO derivatives. DXB-11and CHO-DUK cell lines differ in karyotypes. The revealed differential instability of DXB-11 chromosomes is likely not incidental and results in karyotype heterogeneity of cell population.
Tài liệu tham khảo
Puck TT, Cieciura SJ, Robinson A. Genetics of somatic mammalian cells: III. Long-term cultivation of euploid cells from human and animal subjects. J Exp Med. 1958;108:945–56.
Wurm FM. CHO quasispecies—implications for manufacturing processes. Processes. 2013;1:296–311.
Wurm FM, Wurm MJ. Cloning of CHO cells, productivity and genetic stability—a discussion. Processes. 2017;5:20. https://doi.org/10.3390/pr5020020.
Kao FT, Puck TT. Genetics of somatic mammalian cells, VII. Induction and isolation of nutritional mutants in Chinese hamster cells. Proc Natl Acad Sci USA. 1968;60:1275–81.
Urlaub G, Chasin LA. Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proc Natl Acad Sci USA. 1980;77:4216–20.
Urlaub G, Käs E, Carothers AM, Chasin LA. Deletion of the diploid dihydrofolate reductase locus from cultured mammalian cells. Cell. 1983;33:405–12.
Lewis NE, Liu X, Li Y, Nagarajan H, Yerganian G, O’Brien E, Bordbar A, Roth AM, Rosenbloom J, Bian C, et al. Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nat Biotechnol. 2013;31:759–65.
Feichtinger J, Hernández I, Fischer C, Hanscho M, Auer N, Hackl M, Jadhav V, Baumann M, Krempl PM, Schmidl C, et al. Comprehensive genome and epigenome characterization of CHO cells in response to evolutionary pressures and over time. Biotechnol Bioeng. 2016;113:2241–53.
Bandyopadhyay AA, O’Brien SA, Zhao L, Fu HY, Vishwanathan N, Hu WS. Recurring genomic structural variation leads to clonal instability and loss of productivity. Biotechnol Bioeng. 2019;116:41–53.
Vcelar S, Jadhav V, Melcher M, Auer N, Hrdina A, Sagmeister R, Heffner K, Puklowski A, Betenbaugh M, Wenger T, et al. Karyotype variation of CHO host cell lines over time in culture characterized by chromosome counting and chromosome painting. Biotechnol Bioeng. 2018;115:165–73.
Derouazi M, Martinet D, Besuchet N, Schmutz N, Flaction R, Wicht M, Bertschinger M, Hacker DL, Beckmann JS, Wurm FM. Genetic characterization of CHO production host DG44 and derivative recombinant cell lines. Biochem Biophys Res Commun. 2006;340:1069–77.
Baik JY, Lee KH. Growth rate changes in CHO host cells are associated with karyotypic heterogeneity. Biotechnol J. 2018;13:e1700230. https://doi.org/10.1002/biot.201700230.
Vcelar S, Melcher M, Auer N, Hrdina A, Puklowski A, Leisch F, Jadhav V, Wenger T, Baumann M, Borth N. Changes in chromosome counts and patterns in CHO cell lines upon generation of recombinant cell lines and subcloning. Biotechnol J. 2018;13:e1700495. https://doi.org/10.1002/biot.201700495.
Dahodwala H, Lee KH. The fickle CHO: a review of the causes, implications, and potential alleviation of the CHO cell line instability problem. Curr Opin Biotechnol. 2019;60:128–37.
Baik JY, Lee KH. A framework to quantify karyotype variation associated with CHO cell line instability at a single-cell level. Biotechnol Bioeng. 2017;114:1045–53.
Deaven LL, Petersen DF. The chromosomes of CHO, an aneuploid Chinese hamster cell line: G-band, C-band, and autoradiographic analyses. Chromosoma. 1973;41:129–44.
Kaas CS, Kristensen C, Betenbaugh MJ, Andersen MR. Sequencing the CHO DXB11 genome reveals regional variations in genomic stability and haploidy. BMC Genom. 2015;16:160. https://doi.org/10.1186/s12864-015-1391-x.
Gasser CS, Simonsen CC, Schilling JW, Schimke RT. Expression of abbreviated mouse dihydrofolate reductase genes in cultured hamster cells. Proc Natl Acad Sci USA. 1982;79:6522–6.
Kaufman RJ, Sharp PA, Latt SA. Evolution of chromosomal regions containing transfected and amplified dihydrofolate reductase sequences. Mol Cell Biol. 1983;3:699–711.
Stefanova VN, Yartseva NM, Petrov AV. Comparative cytogenetic analysis of monolayer and suspension Chinese hamster ovary cell lines CHOdhfr-. Tsitologiia. 2015;57:491–8 (Russian).
Milbrandt JD, Azizkhan JC, Hamlin JL. Amplification of a cloned Chinese hamster dihydrofolate reductase gene after transfer into a dihydrofolate reductase-deficient cell line. Mol Cell Biol. 1983;3:1274–82.
Blas M, Francky A, Jamnikar U, Gaser D, Baebler Š, Blejec A, Gruden K. Transcriptomic variation between different Chinese hamster ovary cell lines. Biotechnol Lett. 2015;37:1737–45.
Özkinay C, Mitelman F. A simple trypsin-Giemsa technique producing simultaneous G- and C-banding in human chromosomes. Hereditas. 1979;90:1–4.
Sumner AT. A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res. 1972;75:304–6.
Howell WM, Black DA. Controlled silver staining of nucleolus organizer regions with protective colloidal developer: a one-step method. Experientia. 1980;36:1014–5.
Ray M, Mohandas T. Proposed banding nomenclature for the Chinese hamster chromosomes (Cricetulus griseus). Cytogenet Cell Genet. 1976;16:83–91.
Shibasaki Y, Rønne M. Banding studies in Cricetulus griseus Milne-Edwards, 1867. I. High-resolution banded karyotypes from primary cultures. Cytogenet Cell Genet. 1988;49:282–4.
ISCN 2016: An international system for human cytogenomic nomenclature; McGowan-Jordan J, Simons A, Schmid M (eds). Cytogenet Genome Res. 2016;149:1–140
Worton RG, Ho CC, Duff C. Chromosome stability in CHO cells. Somatic Cell Genet. 1977;3:27–45.
Kao FT, Puck TT. Genetics of somatic mammalian cells. IX. Quantitation of mutagenesis by physical and chemical agents. J Cell Physiol. 1969;74:245–58.
Cao Y, Kimura S, Itoi T, Honda K, Ohtake H, Omasa T. Construction of BAC-based physical map and analysis of chromosome rearrangement in Chinese hamster ovary cell lines. Biotechnol Bioeng. 2012;109:1357–67.
Filatov LV, Mamaeva SE. Karyotype stability of 2 continuous Chinese hamster cell lines—CHO-K1 and V-79. Tsitologiia. 1985;27:1031–8 (Russian).
Lipskaia LA, Grinchuk TM, Efimova EV, Artsybasheva IV, Sorokina EA, Vasukhin VI, Ignatova TN. The amplification and overexpression of mdr-family genes in ethidium bromide-resistant Chinese hamster CHO-K1 cells and in the hybrids of sensitive and resistant cells. Tsitologiia. 1994;36:1236–44 (Russian).
Funanage VL, Myoda TT. Localization of Chinese hamster dihydrofolate reductase gene to band p23 of chromosome 2. Somat Cell Mol Genet. 1986;12:649–55.
Bravo MV, Bianchi MS, Bolzán AD. Bleomycin induces delayed instability of interstitial telomeric sequences in Chinese hamster ovary cells. Mutat Res. 2012;731:133–9.
Podgornaya OI, Ostromyshenskii DI, Enukashvily NI. Who needs this junk, or genomic dark matter. Biochemistry (Mosc). 2018;83:450–66.