Chemical regulation of epigenetic modifications: Opportunities for new cancer therapy

Medicinal Research Reviews - Tập 28 Số 5 - Trang 645-687 - 2008
Y. George Zheng1, Jiang Wu2, Ziyue Chen2, Masha Goodman2
1Department of Chemistry, Georgia State University, PO Box 4098, Atlanta, Georgia 30302-4098, USA
2Departments of Chemistry and Biology, Georgia State University, PO Box 4098, Atlanta, Georgia 30302‐4098

Tóm tắt

AbstractEpigenetics is concerned about heritable changes in gene expression without alteration of the coding sequence. Epigenetic modification of chromatin includes methylation of genomic DNA as well as post‐translational modification of chromatin‐associated proteins, in particular, histones. The spectrum of histone and non‐histone modifications ranges from the addition of relatively small groups such as methyl, acetyl and phosphoryl groups to the attachment of larger moieties such as poly(ADP‐ribose) and small proteins ubiquitin or small ubiquitin‐like modifier (SUMO). The combinatorial nature of DNA methylation and histone modifications constitutes a significant pathway of epigenetic regulation and considerably extends the information potential of the genetic code. Chromatin modification has emerged as a new fundamental mechanism for gene transcriptional activity control associated with many cellular processes like proliferation, growth, and differentiation. Also it is increasingly recognized that epigenetic modifications constitute important regulatory mechanisms for the pathogenesis of malignant transformations. We review here the recent progress in the development of chemical inhibitors/activators that target different chromatin modifying enzymes. Such potent natural or synthetic modulators can be utilized to establish the quantitative contributions of epigenetic modifications in DNA regulated pathways including transcription, replication, recombination and repair, as well as provide leads for developing new cancer therapeutics. © 2008 Wiley Periodicals, Inc. Med Res Rev, 28, No. 5, 645–687, 2008

Từ khóa


Tài liệu tham khảo

10.1016/j.sbi.2005.10.006

10.1146/annurev.genet.34.1.77

10.1038/47412

10.1016/j.cub.2004.07.007

10.1126/science.3310230

10.1210/me.2004-0496

10.1038/sj.bjc.6601575

10.1101/gad.947102

10.1038/nrd1930

10.1007/s10541-005-0131-2

10.1126/science.293.5532.1103

10.1503/cmaj.050774

10.1038/nature02625

10.1534/genetics.104.036020

10.1101/sqb.2006.71.012

10.1002/bies.20171

10.1517/14728214.9.1.135

10.1016/S0959-437X(99)80024-0

10.1093/carcin/21.3.461

10.1016/0092-8674(92)90526-I

10.1073/pnas.97.10.5237

10.1006/dbio.2001.0504

Wolffe A, 1998, Chromatin: Structure and function, xiv

10.1038/38444

10.1016/S0959-437X(03)00026-1

10.1101/gad.1214604

Ling X, 1996, Yeast histone H3 and H4 amino termini are important for nucleosome assembly in vivo and in vitro: Redundant and position‐independent functions in assembly but not in gene regulation, Genes Dev, 10, 686, 10.1101/gad.10.6.686

10.1038/sj.onc.1205600

10.1038/ncponc0354

10.2174/1568011033482440

10.1111/j.1600-0749.2007.00367.x

10.1289/ehp.02110s5739

Salnikow K, 2000, Epigenetic mechanisms of nickel carcinogenesis, J Environ Pathol Toxicol Oncol, 19, 307

10.1093/carcin/bgl004

10.1006/taap.1996.8075

10.1146/annurev.cellbio.17.1.405

10.1038/nchembio0705-64

10.1126/science.1083395

10.1073/pnas.0700816104

Swaminathan V, 2007, Small molecule modulators in epigenetics: Implications in gene expression and therapeutics, Subcell Biochem, 41, 397

10.2174/092986706776361067

10.1101/sqb.2004.69.447

10.1016/0022-2836(88)90122-2

10.1093/hmg/7.2.279

10.1038/890

10.1146/annurev.biochem.74.010904.153721

10.1126/science.1120976

10.1038/nature02886

10.1126/science.1065848

10.1016/j.canlet.2005.03.005

10.1111/j.1749-6632.2003.tb05960.x

10.1038/ng1089

10.1038/nrc1045

10.1016/S1568-1637(03)00012-6

10.1007/s00534-005-1055-3

10.1093/carcin/bgl033

10.1016/S0962-8924(01)02125-0

Howard G, 2007, Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice, Oncogene, 3, 404

10.1073/pnas.0506612102

10.1126/science.1083557

10.1126/science.1083558

10.1016/S0065-230X(08)60702-2

10.1093/emboj/20.10.2536

10.1146/annurev.pharmtox.45.120403.095832

10.1016/S1044-579X(02)00053-6

Jones PA, 2002, The fundamental role of epigenetic events in cancer, Nat Rev, 3, 415, 10.1038/nrg816

10.1016/0092-8674(80)90237-8

10.1073/pnas.81.13.3954

Weber J, 1994, Expression of the MAGE‐1 tumor antigen is up‐regulated by the demethylating agent 5‐aza‐2′‐deoxycytidine, Cancer Res, 54, 1766

Plumb JA, 2000, Reversal of drug resistance in human tumor xenografts by 2′‐deoxy‐5‐azacytidine‐induced demethylation of the hMLH1 gene promoter, Cancer Res, 60, 6039

10.1007/978-3-642-59696-4_9

10.1038/sj.onc.1205699

10.1182/blood.V100.8.2957

10.1038/ncponc0347

Cheson BD, 1986, A critical appraisal of low‐dose cytosine arabinoside in patients with acute non‐lymphocytic leukemia and myelodysplastic syndromes, J Clin Oncol, 4, 1857, 10.1200/JCO.1986.4.12.1857

Lewandowski K, 1995, Current approaches of treatment for myelodysplastic syndrome (MDS), Acta Haematol Pol, 26, 333

Beran M, 2000, Intensive chemotherapy for patients with high‐risk myelodysplastic syndrome, Int J Hematol, 72, 139

10.1021/jm00200a012

Beisler JA, 1976, Dihydro‐5‐azacytidine hydrochloride, a biologically active and chemically stable analog of 5‐azacytidine, Cancer Treat Rep, 60, 1671

Presant CA, 1981, Contrasting cytotoxicity kinetics of 5‐azacytidine and dihydro‐5‐azacytidine hydrochloride in L1210 leukemia in mice, J Natl Cancer Inst, 66, 1151, 10.1093/jnci/66.6.1151

Antonsson BE, 1987, Effect of 5‐azacytidine and congeners on DNA methylation and expression of deoxycytidine kinase in the human lymphoid cell lines CCRF/CEM/0 and CCRF/CEM/dCk‐1, Cancer Res, 47, 3672

10.1097/00001813-199504000-00015

10.1007/BF00257356

Yoo CB, 2004, Zebularine: A new drug for epigenetic therapy, Biochem Soc Trans, 32, 910, 10.1042/BST0320910

10.1093/jnci/95.5.399

10.1021/jm050844z

10.1158/0008-5472.CAN-04-2957

10.1038/nmeth1005-736

10.4049/jimmunol.140.7.2197

Scheinbart LS, 1991, Procainamide inhibits DNA methyltransferase in a human T cell line, J Rheumatol, 18, 530

10.1002/art.1780290508

10.1002/art.1780330309

10.1021/jo034248t

Fang MZ, 2003, Tea polyphenol (‐)‐epigallocatechin‐3‐gallate inhibits DNA methyltransferase and reactivates methylation‐silenced genes in cancer cell lines, Cancer Res, 63, 7563

10.1023/A:1022976528441

10.1093/annonc/mdg216

10.1093/carcin/bgi206

Lin X, 2001, Reversal of GSTP1 CpG island hypermethylation and reactivation of pi‐class glutathione S‐transferase (GSTP1) expression in human prostate cancer cells by treatment with procainamide, Cancer Res, 61, 8611

Segura‐Pacheco B, 2003, Reactivation of tumor suppressor genes by the cardiovascular drugs hydralazine and procainamide and their potential use in cancer therapy, Clin Cancer Res, 9, 1596

Villar‐Garea A, 2003, Procaine is a DNA‐demethylating agent with growth‐inhibitory effects in human cancer cells, Cancer Res, 63, 4984

10.1158/1535-7163.MCT-05-0172

10.1210/er.2004-0008

10.1016/S0968-0004(03)00007-0

10.1016/S0960-9822(02)00901-6

10.1016/S0092-8674(02)00759-6

10.1016/S0962-8924(01)02001-3

10.1038/nature01080

10.1016/S0968-0004(02)02141-2

10.1038/nature01075

10.1073/pnas.1933744100

10.1016/j.eururo.2006.11.020

10.1007/s10549-007-9542-7

10.1016/j.molmed.2004.08.005

10.1016/j.cell.2005.02.020

10.1038/nrc1799

10.1158/0008-5472.CAN-05-2481

10.1038/nchembio721

10.1016/j.molcel.2007.01.017

10.1074/jbc.M101914200

10.1016/j.cell.2004.12.012

10.1074/jbc.M509549200

10.1038/nature04020

10.1038/nature04433

10.1016/j.cell.2006.03.027

10.1038/nature04853

10.1016/j.cell.2006.03.028

10.1101/gad.388206

10.1038/nature04837

10.1038/ncb1546

10.1016/S0968-0004(00)01700-X

10.1038/ng1531

10.1158/0008-5472.CAN-06-1570

Yang ZQ, 2000, Identification of a novel gene, GASC1, within an amplicon at 9p 23‐24frequently detected in esophageal cancer cell lines, Cancer Res, 60, 4735

10.1016/0028-3908(83)90194-6

10.1016/j.chembiol.2006.05.004

10.1021/bi700414b

10.1073/pnas.0700720104

10.1101/gad.927301

10.1074/jbc.M405295200

10.1016/S0079-6603(08)60825-9

10.1016/S0960-9822(01)00600-5

10.1126/science.1060781

10.1093/embo-reports/kvf013

10.1128/MCB.24.21.9630-9645.2004

10.1002/jnr.490160204

10.1038/nrc819

Johnson BA, 1993, Accumulation of substrates for protein L‐isoaspartyl methyltransferase in adenosine dialdehyde‐treated PC12 cells, J Biol Chem, 268, 6174, 10.1016/S0021-9258(18)53235-X

Hanzelka BL, 1996, Quorum sensing in Vibrio fischeri: Evidence that S‐adenosylmethionine is the amino acid substrate for autoinducer synthesis, J Bacteriol, 178, 5291, 10.1128/jb.178.17.5291-5294.1996

10.1016/0003-9861(92)90369-8

10.1016/j.molcel.2004.06.042

10.1074/jbc.M401853200

10.1016/j.cell.2004.08.020

10.1126/science.1101400

10.1002/bies.10357

10.1074/jbc.M208795200

10.1189/jlb.70.1.46

10.1006/bbrc.2001.6303

10.1073/pnas.0509639103

10.1021/bi047505c

10.1002/bies.20205

Garrett R, 1999, Biochemistry, 871

10.1016/j.febslet.2005.06.035

10.1021/ja0576233

10.1002/j.1460-2075.1988.tb02956.x

10.1016/j.abb.2004.09.003

10.1093/nar/gkh252

10.1128/MMBR.64.2.435-459.2000

Roth KS, 2001, Urinary tract infections in children, Acta Paediatr Taiwan, 42, 70

Lee KK, 2007, Histone acetyltransferase complexes: One size doesn't fit all, Nat Rev, 8, 284, 10.1038/nrm2145

Polevoda B, 2002, The diversity of acetylated proteins, Genome Biol, 3, 10.1186/gb-2002-3-5-reviews0006

10.1002/(SICI)1097-4652(199911)181:2<218::AID-JCP4>3.0.CO;2-5

10.1042/BJ20061194

10.1016/S0168-9525(98)01438-3

10.1038/73536

Muraoka M, 1996, p300 gene alterations in colorectal and gastric carcinomas, Oncogene, 12, 1565

10.1073/pnas.0401002101

10.1016/S0092-8674(00)80304-9

10.1128/MCB.20.15.5540-5553.2000

10.1016/j.molcel.2006.11.021

10.1016/S0962-8924(02)02391-7

10.1016/S0962-8924(00)01886-9

Rowley JD, 1997, All patients with the T(11;16)(q23;p13.3) that involves MLL and CBP have treatment‐related hematologic disorders, Blood, 90, 535

Wang HG, 1993, Identification of specific adenovirus E1A N‐terminal residues critical to the binding of cellular proteins and to the control of cell growth, J Virol, 67, 476, 10.1128/jvi.67.1.476-488.1993

Stein RW, 1990, Analysis of E1A‐mediated growth regulation functions: Binding of the 300‐kilodalton cellular product correlates with E1A enhancer repression function and DNA synthesis‐inducing activity, J Virol, 64, 4421, 10.1128/jvi.64.9.4421-4427.1990

10.1038/nrm827

10.1016/S0065-230X(08)60214-6

10.1016/S0092-8674(00)81479-8

10.1128/MCB.20.2.556-562.2000

10.1016/S0168-9525(03)00115-X

10.1016/S0092-8674(00)00072-6

10.1093/emboj/20.24.7184

10.1006/scdb.2000.0184

10.1038/sj.onc.1206342

10.1074/jbc.274.25.17599

10.1038/35099568

10.1016/S1097-2765(00)80452-9

10.1016/S1097-2765(00)00063-0

10.1016/S0968-0896(03)00265-7

10.1021/ja0558544

10.1074/jbc.M301580200

10.1039/a807053i

10.1074/jbc.M402839200

10.1074/jbc.M409024200

10.1016/j.chembiol.2007.04.011

10.1158/1535-7163.MCT-05-0135

10.1158/1535-7163.MCT-06-0545

Shankar S, 2007, Involvement of Bcl‐2 family members, phosphatidylinositol 3′‐kinase/AKT and mitochondrial p53 in curcumin (diferulolylmethane)‐induced apoptosis in prostate cancer, Int J Oncol, 30, 905

10.1002/anie.200453879

10.1021/jm060943s

10.1016/S0168-9525(03)00073-8

10.1126/stke.2962005re11

Guo JJ, 2006, Histone deacetylation is involved in activation of CXCL10 upon IFNgamma stimulation, Mol Cells, 22, 163, 10.1016/S1016-8478(23)17405-X

10.1038/35042675

10.1016/j.jmb.2004.02.006

10.1042/bj20021321

10.1016/S0076-6879(02)53056-1

10.1074/jbc.M111871200

10.1038/sj.cr.7310149

10.1002/0470862637.ch18

10.1016/j.tig.2005.08.009

10.1111/j.1600-0749.2005.00228.x

10.4161/cc.4.4.1564

10.5483/BMBRep.2003.36.1.110

10.1038/35895

Bi G, 2006, The molecular mechanism of HDAC inhibitors in anticancer effects, Cell Mol Immunol, 3, 285

Secrist JP, 2003, HDAC inhibitors for the treatment of cancer, Curr Opin Invest Drugs, 4, 1422

10.1097/CAD.0b013e328012a5db

10.1586/14737140.7.4.583

10.1101/gad.14.9.1021

10.1016/j.cell.2005.01.029

10.1002/med.20056

10.1002/med.20024

10.1517/13543784.14.12.1497

10.1016/j.ejmech.2004.10.001

Perrine SP, 1994, Butyrate derivatives. New agents for stimulating fetal globin production in the beta‐globin disorders, Am J Pediatr Hematol Oncol, 16, 67

10.1016/0092-8674(78)90305-7

10.1016/0092-8674(78)90306-9

10.1016/j.leukres.2004.11.022

10.1038/43710

10.1016/S0021-9258(17)44885-X

10.1038/5047

10.1200/JCO.2005.14.167

Kelly WK, 2003, Phase I clinical trial of histone deacetylase inhibitor: Suberoylanilide hydroxamic acid administered intravenously, Clin Cancer Res, 9, 3578

10.1038/35106079

10.1073/pnas.96.8.4592

10.1158/0008-5472.CAN-03-2630

10.1158/1078-0432.CCR-04-1092

10.1081/CNV-200039852

10.1023/A:1006489328324

10.1093/annonc/mdh438

10.1016/S0021-9258(18)41547-5

10.1182/blood-2004-05-1693

10.1046/j.1359-4117.2002.01039.x

10.1182/blood.V98.9.2865

Sandor V, 2002, Phase I trial of the histone deacetylase inhibitor, depsipeptide (FR901228, NSC 630176), in patients with refractory neoplasms, Clin Cancer Res, 8, 718

10.2174/0929867033456675

10.1073/pnas.0430973100

10.1016/j.molcel.2007.05.033

10.1242/jcs.03431

10.1016/S1074-7613(04)00078-0

10.1093/emboj/cdg115

10.1038/417455a

10.1091/mbc.11.6.2069

10.1074/jbc.M205670200

10.1074/jbc.M106779200

10.1073/pnas.261574398

10.1021/jm030473r

10.1371/journal.pbio.0030041

10.1038/nature01960

10.1074/jbc.M500655200

10.1073/pnas.98.1.87

Kruh J, 1982, Effects of sodium butyrate, a new pharmacological agent, on cells in culture, Mol Cell Biochem, 42, 65

Stadtman ER, 1949, Fatty acid synthesis by enzyme preparations of Clostridium kluyveri; a consideration of postulated 4‐carbon intermediates in butyrate synthesis, J Biol Chem, 181, 221, 10.1016/S0021-9258(18)56643-6

10.1016/j.bmcl.2004.08.016

10.1021/ol036098e

10.1002/anie.200461346

10.1111/j.1432-1033.1978.tb12135.x

10.1073/pnas.95.13.7480

10.1101/gad.1184604

10.1101/gad.1267105

Ota T, 2002, Increased mitotic phosphorylation of histone H3 attributable to AIM‐1/Aurora‐B overexpression contributes to chromosome number instability, Cancer Res, 62, 5168

Pascreau G, 2003, Phosphorylation of histone and histone‐like proteins by aurora kinases during mitosis, Prog Cell Cycle Res, 5, 369

10.1074/jbc.M410521200

10.1002/mc.20220

10.1126/stke.2003.195.pe33

10.1038/nrm1737

10.1158/0008-5472.CAN-03-3207

10.1074/jbc.C100466200

10.1054/bjoc.2000.1684

10.1093/jnci/91.13.1160

10.1093/emboj/17.11.3052

10.1007/s004120100130

Tatsuka M, 1998, Multinuclearity and increased ploidy caused by overexpression of the aurora‐ and Ipl1‐like midbody‐associated protein mitotic kinase in human cancer cells, Cancer Res, 58, 4811

10.1038/2496

10.1038/ng1107

10.1016/j.tig.2004.02.007

10.1083/jcb.200208091

10.1091/mbc.E04-10-0891

10.1016/j.bmcl.2005.11.053

10.2174/1568026054637719

10.1038/nm1003

10.1016/S1359-6446(05)03691-3

Ladygina NG, 2005, Effect of the pharmacological agent hesperadin on breast and prostate tumor cultured cells, Biomed Khim, 51, 170

10.1016/j.molcel.2005.03.031

10.1002/j.1460-2075.1995.tb07078.x

10.1074/jbc.271.22.13197

10.1074/jbc.M102288200

10.1128/MCB.23.17.6129-6138.2003

10.1021/jm010066k

10.1016/S0006-291X(05)81520-7

Leopold WR, 1984, Anticancer activity of the structurally novel antibiotic Cl‐920 and its analogues, Cancer Res, 44, 1928

10.1021/ja00270a061

10.1007/s00018-006-6281-6

10.1126/science.1096775

10.1002/bies.20085

10.1038/nrm1963

10.4161/cc.4.1.1398

10.1006/abbi.2000.1926

10.1124/pr.54.3.375

10.2174/0929867054864778

10.1006/excr.2001.5263

10.1093/emboj/18.16.4446

10.2174/1389201023378265

10.1161/01.RES.83.1.85

10.1358/dnp.2002.15.4.840052

10.1016/j.bcp.2004.04.023

10.1038/nrd1718

10.1016/S0304-419X(01)00035-X

10.1002/gcc.10250

10.1016/0304-3835(93)90184-B

10.2174/0929867033368376

10.1017/S146239940500904X

10.1042/bj1850775

Banasik M, 1992, Specific inhibitors of poly(ADP‐ribose) synthetase and mono(ADP‐ribosyl)transferase, J Biol Chem, 267, 1569, 10.1016/S0021-9258(18)45983-2

10.1073/pnas.84.4.1107

10.1358/dnp.2007.20.3.1092098

Virag L, 1999, Requirement of intracellular calcium mobilization for peroxynitrite‐induced poly(ADP‐ribose) synthetase activation and cytotoxicity, Mol Pharmacol, 56, 824

10.1016/S0006-2952(98)00286-X

10.1096/fj.00-0299com

Delaney CA, 2000, Potentiation of temozolomide and topotecan growth inhibition and cytotoxicity by novel poly(adenosine diphosphoribose) polymerase inhibitors in a panel of human tumor cell lines, Clin Cancer Res, 6, 2860

10.1007/s002800000248

10.1038/sj.cdd.4400832

10.1158/1078-0432.CCR-1144-3

10.1016/S0936-6555(03)00223-1

10.1074/jbc.M402729200

10.1074/jbc.C300437200

10.1093/jnci/djh005

10.1042/bj1850775

10.1016/S0006-2952(01)00935-2

Suto MJ, 1991, Dihydroisoquinolinones: The design and synthesis of a new series of potent inhibitors of poly(ADP‐ribose) polymerase, Anticancer Drug Des, 6, 107

10.1016/S0968-0896(98)00029-7

10.1124/jpet.103.048934

10.1016/0968-0004(94)90280-1

10.1080/095530099140843

10.1021/jm0255769

10.1124/jpet.104.068932

10.1021/jm0499256

10.1021/jm980273t

10.1016/j.febslet.2005.01.036

10.1111/j.1600-051X.2006.01016.x

10.1097/00003246-200205000-00019

Abdelkarim GE, 2001, Protective effects of PJ34, a novel, potent inhibitor of poly(ADP‐ribose) polymerase (PARP) in in vitro and in vivo models of stroke, Int J Mol Med, 7, 255

10.1097/00024382-200405000-00005

10.1073/pnas.95.7.3867

10.1016/0006-291X(81)91240-7

Tsai YJ, 1992, Mouse mammary tumor virus gene expression is suppressed by oligomeric ellagitannins, novel inhibitors of poly(ADP‐ribose) glycohydrolase, J Biol Chem, 267, 14436, 10.1016/S0021-9258(19)49731-7

10.1016/0304-4165(93)90022-Z

10.1021/jm00002a021

10.1016/0167-4838(85)90207-9

10.1016/S0006-8993(03)02774-4

10.2183/pjab.78.15

10.1002/anie.200462346

10.1007/400_006

10.1016/j.bbamcr.2004.09.019

10.1016/j.bbamcr.2004.10.003

10.1038/nrm1049

10.1038/nature00970

10.1074/jbc.C200348200

10.1016/S1097-2765(04)00026-7

10.1038/18457

10.1016/S0959-437X(03)00021-2

10.1016/S0378-1119(00)00139-6

10.1016/j.tibs.2007.05.002

10.1073/pnas.1735528100

10.1016/j.gde.2005.07.004

10.1016/S1097-2765(04)00060-7

10.1016/S1359-6446(03)02780-6

10.1016/S1368-7646(02)00121-8

Berleth ES, 1992, Inhibition of ubiquitin‐protein ligase (E3) by mono‐ and bifunctional phenylarsenoxides. Evidence for essential vicinal thiols and a proximal nucleophile, J Biol Chem, 267, 16403, 10.1016/S0021-9258(18)42017-0

10.1074/jbc.M200842200

10.1074/jbc.M004293200

10.1074/jbc.M413209200

10.1073/pnas.0403498101

10.1002/(SICI)1097-0215(19980911)77:6<833::AID-IJC6>3.0.CO;2-V

Esteller M, 2001, A gene hypermethylation profile of human cancer, Cancer Res, 61, 3225

10.1038/sj.bjc.6602918

10.1093/hmg/ddl043

10.1016/S1074-5521(02)00265-X

10.1038/sj.bjc.6603844

10.1158/1078-0432.CCR-06-0511

10.1016/j.dnarep.2006.10.005

10.1126/sageke.2003.14.re4

10.1006/bmme.1995.1059

10.1093/hmg/ddh006

10.1016/j.jnutbio.2005.05.003

10.1016/j.drup.2004.06.004

10.1016/S0955-0674(03)00013-9

Lo Coco F, 2002, Progress in differentiation induction as a treatment for acute promyelocytic leukemia and beyond, Cancer Res, 62, 5618

10.2174/1381612043383980

10.1016/j.drudis.2006.11.012