Chatbot để cải thiện kỹ năng sử dụng dấu câu trong tiếng Tây Ban Nha và nâng cao môi trường học tập mở và linh hoạt

Esteban Vázquez‐Cano1, Santiago Mengual-Andrés2, Eloy López-Meneses3
1Department of Didactics and School Organization, Faculty of Education, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal, 14, 28040, Madrid, Spain
2Department of Comparative Education and History of Education, School of Philosophy and Education, University of Valencia, Valencia, Spain
3Department of Education and Social Psychology, Faculty of Social Sciences, University Pablo de Olavide, Sevilla, Spain

Tóm tắt

Tóm tắt

Mục tiêu của bài báo này là phân tích chức năng sư phạm của một chatbot nhằm cải thiện kết quả học tập của sinh viên tại Đại học Giáo dục Từ xa Quốc gia (UNED / Tây Ban Nha) trong việc tiếp cận kiến thức về môn Ngôn ngữ Tây Ban Nha. Để thực hiện điều này, một thí nghiệm bán thực nghiệm đã được thiết kế, và một phương pháp định lượng đã được áp dụng thông qua bài kiểm tra trước và sau cho hai nhóm: nhóm đối chứng và nhóm thực nghiệm, trong đó so sánh hiệu quả của hai mô hình giảng dạy, một mô hình truyền thống hơn dựa trên bài tập viết trên giấy và một mô hình dựa trên sự tương tác với một chatbot. Sau đó, nhận thức của nhóm thực nghiệm trong một diễn đàn học thuật về việc sử dụng giáo dục của chatbot đã được phân tích thông qua khai thác văn bản với các bài kiểm tra của Phân bổ Dirichlet tiềm ẩn (LDA), ma trận khoảng cách cặp và bigrams. Kết quả định lượng cho thấy rằng sinh viên trong nhóm thực nghiệm đã cải thiện đáng kể kết quả so với sinh viên sử dụng phương pháp truyền thống hơn (nhóm thực nghiệm / trung bình: 32.1346 / nhóm đối chứng / trung bình: 28.4706). Độ chính xác trong việc sử dụng dấu câu, đặc biệt là dấu phẩy, dấu hai chấm và dấu chấm trong các mẫu cú pháp khác nhau đã được cải thiện. Hơn nữa, nhận thức của sinh viên trong nhóm thực nghiệm cho thấy họ đánh giá tích cực các chatbot trong quá trình dạy-học của mình theo ba khía cạnh: “hỗ trợ” và sự đồng hành lớn hơn trong quá trình học, vì họ cảm nhận được tính tương tác cao hơn do tính chất hội thoại của chúng; “phản hồi” và sự tương tác tốt hơn so với phương pháp truyền thống hơn, và cuối cùng, họ đặc biệt đánh giá cao tính dễ sử dụng và khả năng tương tác cũng như học tập ở bất kỳ nơi nào và vào bất kỳ thời điểm nào.

Từ khóa


Tài liệu tham khảo

Ali, S. S., Amin, T., & Ishtiaq, M. (2020). Punctuation errors in writing: A comparative study of students’ performance from different Pakistani universities. Sir Syed Journal of Education & Social Research, 3(1), 165–177. https://doi.org/10.36902/sjesr-vol3-iss1-2020(165-177)

Angelillo, J. (2002). Teaching young writers to use punctuation with precision and purpose. Profile Books.

Araujo, T. (2018). Living up to the chatbot hype: The influence of anthropomorphic design cues and communicative agency framing on conversational agent and company perceptions. Computers in Human Behavior, 85, 183–189. https://doi.org/10.1016/j.chb.2018.03.051

Bailey, D. (2019). Chatbots as conversational agents in the context of language learning. Proceedings of the Fourth Industrial Revolution and Education, pp 32–41. Dajeon, South Korea.

Beale, R., & Creed, C. (2009). Affective interaction: How emotional agents affect users. International Journal of Human-Computer Studies, 67, 775–776. https://doi.org/10.1016/j.ijhcs.2009.05.001

Benotti, L., Martinez, M. C., & Schapachnik, F. (2018). A tool for introducing computer science with automatic formative assessment. IEEE Transactions on Learning Technologies, 11(2), 179–192. https://doi.org/10.1109/TLT.2017.2682084

Bentivoglio, C. A., Bonura, D., Cannella, V., Carletti, S., Pipitone, A., Pirrone, R., Rossi, P. G., & Russo, G. (2010). Agenti intelligenti supporto dell’interazione con l’utente all’interno di processi di apprendimento. Journal of e-Learning and Knowledge Society, 2(6), 27–36

Bii, P. (2013). Chatbot technology: A possible means of unlocking student potential to learn how to learn. Educational Research, 4(2), 218–221

Blei, D. M., Andrew, Y. N., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3(4–5), 993–1022

Bram, B. (1995). Write well improving writing skills. Kanisius.

Bruck, P. A., Motiwalla, L., & Foerster, F. (2012). Mobile learning with micro-content: A framework and evaluation. Proceedings of the 25th Bled eConference, 527–543. Bled, Slovenia.

Bruni, E., Tran, N. K., & Baroni, M. (2014). Multimodal distributional semantics. Journal of Artificial Intelligence Research, 49, 1–47. https://doi.org/10.1613/jair.4135

Budan, I. A., & Graeme, H. (2006). Evaluating WordNet-based measures of semantic distance. Computational Linguistics, 32(1), 13–47. https://doi.org/10.1162/coli.2006.32.1.13

Bullinaria, J. A., & Levy, J. P. (2012). Extracting semantic representations from word cooccurrence statistics: Stop-lists, stemming and svd. Behavior Research Methods, 44, 890–907. https://doi.org/10.3758/s13428-011-0183-8

Cabero, J., & Ruiz-Palmero, J. (2018). Technologies of information and communication for inclusion: Reformulating the “digital gap.” IJERI: International Journal of Educational Research and Innovation, 9, 16–30

Cabero, J., Vázquez-Cano, E., López-Meneses, E., & Jaén-Martínez, A. (2020). Posibilidades formativas de la tecnología aumentada. Un estudio diacrónico en escenarios universitarios. Revista Complutense De Educación, 31(2), 143–154. https://doi.org/10.5209/rced.61934

Caddéo, S. (1998). L’usage de la ponctuation chez les enfants. In J.-M. Defays, L. Rosier, & F. Tilkin (Eds.), Actes du colloque international et interdisciplinaire de Liège: A qui appartient la ponctuation? (pp. 255–274). De Boeck.

Cassany, D. (1999). Puntuación: Investigaciones, concepciones y didáctica. Letras, 58, 21–54

Chen, J. A., Tutwiler, M. S., Metcalf, S. J., Kamarainen, A., Grotzer, T., & Dede, C. (2016). A multi-user virtual environment to support students’ self-efficacy and interest in science: A latent growth model analysis. Learning and Instruction, 41, 11–22. https://doi.org/10.1016/j.learninstruc.2015.09.007

Ciechanowski, L., Przegalinska, A., & Wegner, K. (2018). The necessity of new paradigms in measuring human–chatbot interaction. In M. Hoffman (Ed.), Advances in cross-cultural decision making. (pp. 205–214). Springer.

Colace, F., Santo, M. D., Lombardi, M., Pascale, F., Pietrosanto, A., & Lemma, S. (2018). Chatbot for e-learning: A case of study. International Journal of Mechanical Engineering and Robotics Research, 7(5), 528–533. https://doi.org/10.18178/ijmerr.7.5.528-533

Coniam, D. (2008). Evaluating the language resources of chatbots for their potential in English as a second language. ReCALL, 20(01), 98–116. https://doi.org/10.1017/S0958344008000815

Coniam, D. (2014). The linguistic accuracy of chatbots: Usability from an ESL perspective. Text & Talk, 34(5), 545–567. https://doi.org/10.1515/text-2014-0018

Cordova, D. I., & Lepper, M. R. (1996). Intrinsic motivation and the process of learning: Beneficial effects of contextualization, personalization, and choice. Journal of Educational Psychology, 88(4), 715–730. https://doi.org/10.1037/0022-0663.88.4.715

Crown, S., Fuentes, A., Jones, R., Nambiar, R., & Crown, D. (2010). Ann G. Neering: Interactive chatbot to motivate and engage engineering students. American Society for Engineering Education, 15(1), 1–13

Daffern, T., & Mackenzie, N. (2015). Building strong writers: Creating a balance between the authorial and secretarial elements of writing. Literacy Learning: the Middle Years, 23(1), 23–32

Fang, Z., & Wang, Z. (2011). Beyond rubrics: Using functional language analysis to evaluate student writing. Australian Journal of Language and Literacy, 34(2), 147–165

Farkash, Z. (2018). Education Chatbot: 4 ways chatbots are revolutionizing education. Chatbot Magazine. https://chatbotsmagazine.com/education-chatbot-4-ways-chatbots-arerevolutionizing-education-33f36627964c

Feng, Y., Bagheri, E., Ensan, F., & Jovanovic, J. (2017). The state of the art in semantic relatedness: A framework for comparison. Knowledge Engineering Review, 32, 1–30. https://doi.org/10.1017/S0269888917000029

Ferreiro, E. (1999). Cultura escrita y educación. Conversaciones con Emilia Ferreiro. Fondo de Cultura Económica.

Ferreiro, E., & Teberosky, A. (1979). Los sistemas de escritura en el desarrollo del niño. Siglo XXI.

Fryer, L. K., & Carpenter, R. (2006). Bots as language learning tools. Language Learning and Technology, 10(3), 8–14. http://llt.msu.edu/vol10num3/emerging/

Fryer, L. K., Nakao, K., & Thompson, A. (2019). Chatbot learning partners: Connecting learning experiences, interest and competence. Computers in Human Behavior, 93, 279–289. https://doi.org/10.1016/j.chb.2018.12.023

Fuente, M. (1993). Los signos de puntuación: Normativa y uso. Universidad de Valladolid.

Garcia Brustenga, G., Fuertes-Alpiste, M., & Molas-Castells, N. (2018). Briefing paper: Los chatbots en educación. eLearn Center. Universitat Oberta de Catalunya.

García-Valdecasas, J. (2011). Agent-based modelling: A new way of exploring social phenomena. Revista Española De Investigaciones Sociológicas, 136, 91–110. https://doi.org/10.5477/cis/reis.136.91

Ghose, S., & Barua, J. (2013). Toward the implementation of a topic specific dialogue based natural language chatbot as an undergraduate advisor. Proceedings of the International Conference on Informatics, Electronics and Vision, 1–5. Dhaka, Bangladesh. doi: https://doi.org/10.1109/ICIEV.2013.6572650

Giurgiu, L. (2017). Microlearning an evolving elearning trend. Scientific Bulletin, 22(1), 18–23. https://doi.org/10.1515/bsaft-2017-0003

Goda, Y., Yamada, M., Matsukawa, H., Hata, K., & Yasunami, S. (2014). Conversation with a chatbot before an online EFL group discussion and the effects on critical thinking. The Journal of Information and Systems in Education, 13(1), 1–7. https://doi.org/10.12937/ejsise.13.1

Grossman, J., Lin, Z., Sheng, H., Wei, J. T.-Z., Williams, J. J., & Goel, S. (2019). MathBot: Transforming online resources for learning math into conversational interactions. http://logical.ai/story/papers/mathbot.pdf

Gupta, S., & Jagannath, K. (2019). Artificially intelligently (AI) tutors in the classroom: A need assessment study of designing chatbots to support student learning. Proceedings of the Twenty-Third Pacific Asia Conference on Information Systems, 1–8. Chicago, United States.

Hasler, B. S., Tuchman, P., & Friedman, D. (2013). Virtual research assistants: Replacing human interviewers by automated avatars in virtual worlds. Computers in Human Behavior, 29, 1608–1616. https://doi.org/10.1016/j.chb.2013.01.004

Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77, 81–112

Heidig, S., & Clarebout, G. (2011). Do pedagogical agents make a difference to student motivation and learning? Educational Research Review, 6, 27–54. https://doi.org/10.1016/j.edurev.2010.07.004

Hill, J., Ford, W. R., & Farreras, I. G. (2015). Real conversations with artificial intelligence: A comparison between humanehuman online conversations and humanechatbot conversations. Computers in Human Behavior, 49, 245–250. https://doi.org/10.1016/j.chb.2015.02.026

Ho, A., Hancock, J., & Miner, A. S. (2018). Psychological, relational, and emotional effects of self-disclosure after conversations with a chatbot. Journal of Communication, 68(4), 712–733. https://doi.org/10.1093/joc/jqy026

Hsu, H.-C.K., Wang, C. V., & Levesque-Bristol, C. (2019). Reexamining the impact of self-determination theory on learning outcomes in the online learning environment. Education and Information Technologies, 24(3), 2159–2174. https://doi.org/10.1007/s10639-019-09863-w

Huang, W., Hew, K. F., & Gonda, D. E. (2019). Designing and evaluating three chatbot enhanced activities for a flipped graduate. International Journal of Mechanical Engineering and Robotics Research, 8(5), 813–818. https://doi.org/10.18178/ijmerr.8.5.813-818

Io, H. N., & Lee, C. B. (2018). Chatbots and conversational agents: A bibliometric analysis. Proceedings of the IEEE International Conference on Industrial Engineering and Engineering Management, 215–219. Singapore.

Jeno, L. M., Adachi, P. J., Grytnes, J. A., Vandvik, V., & Deci, E. L. (2019). The effects of m-learning on motivation, achievement and well-being: A self-determination theory approach. British Journal of Educational Technology, 50(2), 669–683. https://doi.org/10.1111/bjet.12657

Johnson, W. L., & Lester, J. C. (2016). Face-to-face interaction with pedagogical agents, twenty years later. International Journal of Artificial Intelligence in Education, 26, 25–36

Jomah, O., Masoud, A. K., Kishore, X. P., & Aurelia, S. (2016). Micro learning: A modernized education system. BRAIN Broad Research in Artificial Intelligence and Neuroscience, 7(1), 103–110

Jones, M., & Mewhort, D. (2007). Representing word meaning and order information in a composite holographic lexicon. Psychological Review, 114(1), 1–37. https://doi.org/10.1037/0033-295X.114.1.1

Klevjer, R. (2006). What is the avatar? Fiction and embodiment in avatar-based single player computer games. Dissertation for the degree doctor rerum politicarum. University of Bergen.

Klopfenstein, L. C., Delpriori, S., Malatini, S., & Bogliolo, A. (2017). The rise of bots: A survey of conversational interfaces, patterns, and paradigms. Proceedings of the 2017 Conference on Designing Interactive Systems, DIS '17, 555–565. New York, United States. https://doi.org/https://doi.org/10.1145/3064663.3064672

Labuhn, A. S., Zimmerman, B. J., & Hasselhorn, M. (2010). Enhancing students’ self-regulation and mathematics performance: The influence of feedback and self-evaluative standards. Metacognition and Learning, 5(2), 173–194. https://doi.org/10.1007/s11409-010-9056-2

Liew, T., Mat Zin, N., & Sahari, N. (2017). Exploring the affective, motivational and cognitive effects of pedagogical agent enthusiasm in a multimedia learning environment. Human-Centric Computing and Information Sciences, 7(1), 1–21. https://doi.org/10.1186/s13673-017-0089-2

Liu, Q., Huang, J., Wu, L., Zhu, K., & Ba, S. (2019). CBET: Design and evaluation of a domain-specific chatbot for mobile learning. Universal Access in the Information Society. https://doi.org/10.1007/s10209-019-00666-x

López-Meneses, E., Sirignano, F. M., Vázquez-Cano, E., & Ramírez-Hurtado, J. M. (2020). University students’ digital competence in three areas of the DigCom 2.1 model: A comparative study at three European universities. Australasian Journal of Educational Technology, 36(3), 69–88. https://doi.org/10.14742/ajet.5583

Macken-Horarik, M., & Sandiford, C. (2016). Diagnosing development: A grammatics for tracking student progress in narrative composition. International Journal of Language Studies, 10(3), 61–94

Mohammed, G. S., & Wakil, K. (2018). The effectiveness of microlearning to improve students’ learning ability. International Journal of Educational Research Review, 3(3), 32–38

Nikou, S. A. (2019). A micro-learning based model to enhance student teachers’ motivation and engagement in blended learning. Proceedings of the SITE 2019, Society for Information Technology and Teacher Education, 255–260. Las Vegas, United States.

Nikou, S. A., & Economides, A. A. (2017). Mobile-based assessment: Integrating acceptance and motivational factors into a combined model of self-determination theory and technology acceptance. Computers in Human Behavior, 68, 83–95. https://doi.org/10.1016/j.chb.2016.11.020

Nikou, S. A., & Economides, A. A. (2018). Mobile-based micro-learning and assessment: Impact on learning performance and motivation of high school students. Journal of Computer Assisted Learning, 34(3), 269–278. https://doi.org/10.1111/jcal.12240

Paschoal, L. N., Turci, L. F., Conte, T. U., & Souza, S. R. S. (2019). Towards a conversational agent to support the software testing education. Proceedings of the XXXIII Brazilian Symposium on Software Engineering, 57–66. Curitiba, Brazil.

Polo, J. (1990). Manifiesto ortográfico de la lengua española. Visor.

Procter, M., Lin, F., & Heller, B. (2012). Intelligent intervention by conversational agent through chatlog analysis. Smart Learning Environments, 5(30), 1–15. https://doi.org/10.1186/s40561-018-0079-5

Reyes-Reina, D., Vilaça, L., Spolidorio, S., & Martins, M. (2019). El desarrollo sociotécnico de un chatbot o ¿Cómo se construye una caja negra? Revista Tecnologia e Sociedade, 16(39), 23–40

Rosenthal, R. (1991). Effect sizes: Pearson’s correlation, its display via the BESD, and alternative indices. American Psychologist, 46(10), 1086–1087

Rosenthal, R., & Rubin, D. B. (1982). A simple, general purpose display of magnitude of experimental effect. Journal of Educational Psychology, 74(2), 166–169. https://doi.org/10.1037/0022-0663.74.2.166.

Ruan, S., Willis, A., Xu, Q., Davis, G. M., Jiang, L., Brunskill, E., & Landay, J. A. (2019). BookBuddy. Proceedings of the Sixth ACM Conference on Learning @ Scale - L@S '19, 1–4. New York, United States. https://doi.org/https://doi.org/10.1145/3330430.3333643

Schroeder, N., Adesope, O., & Gilbert, R. (2013). How effective are pedagogical agents for learning? A metaanalytic review. Journal of Educational Computing Research, 49(1), 1–39. https://doi.org/10.2190/ec.49.1.a

Schroeder, N. L., Romine, W. L., & Craig, S. D. (2017). Measuring pedagogical agent persona and the influence of agent persona on learning. Computers & Education, 109, 176–186. https://doi.org/10.1016/j.compedu.2017.02.015

Scull, J., & Mackenzie, N. M. (2018). Developing authorial skills: Child language leading to text construction, sentence construction and vocabulary development. In N. M. Mackenzie & J. Scull (Eds.), Understanding and supporting young writers from birth to 8. (pp. 89–115). Routledge.

Sha, G. (2009). AI-based chatterbots and spoken English teaching: A critical analysis. Computer Assisted Language Learning, 22(3), 269–281. https://doi.org/10.1080/09588220902920284

Shail, M. S. (2019). Using micro-learning on mobile applications to increase knowledge retention and work performance: A review of literature. Cureus, 11(8), e5307. https://doi.org/10.7759/cureus.5307

Sheth, A., Yip, H. Y., Iyengar, A., & Tepper, P. (2019). Cognitive services and intelligent chatbots: Current perspectives and special issue introduction. IEEE Internet Computing, 23(2), 6–12

Shum, H.-Y., He, X., & Li, D. (2018). From Eliza to XiaoIce: Challenges and opportunities with social chatbots. Frontiers of Information Technology & Electronic Engineering, 19(1), 10–16. https://doi.org/10.1631/FITEE.1700826

Smutny, P., & Schreiberova, P. (2020). Chatbots for learning: A review of educational chatbots for the Facebook Messenger. Computers & Education, 151, 103862. https://doi.org/10.1016/j.compedu.2020.103862

Stickler, U., & Hampel, R. (2015). Transforming teaching: New skills for online language learning spaces. Palgrave Macmillan.

Subramaniam, N. K. (2019). Teaching & learning via chatbots with immersive and machine learning capabilities. Proceedings of the ICE 2019 Conference Proceedings, 145–156. Jyväskylä, Finland.

Tamayo, P. A., Herrero, A., Martín, J., Navarro, C., & Tránchez, J. M. (2020). Design of a chatbot as a distance learning assistant. Open Praxis, 12(1), 145–153. https://doi.org/10.5944/openpraxis.12.1.1063

Taraban, R. (2018). Practicing metacognition on a chatbot. Improve with metacognition. http://www.improvewithmetacognition.com/2035–2/

Tegos, S., Demetriadis, S., & Tsiatsos, T. (2014). A configurable conversational agent to trigger students’ productive dialogue: A pilot study in the CALL domain. International Journal of Artificial Intelligence in Education, 24(1), 62–91. https://doi.org/10.1007/s40593-013-0007-3

Tegos, S., Psathas, G., Tsiatsos, T., & Demetriadis, S. (2019). Designing conversational agent interventions that support collaborative chat activities in MOOCs. Proceedings of EMOOCs 2019: Work in Progress Papers of the Research, Experience and Business Tracks, 66–71. Naples, Italy.

Thompson, A., Gallacher, A., & Howarth, M. (2018). Stimulating task interest: Human partners or chatbots? Proceedings of the Future-proof CALL: language learning as exploration and encounters, 302–306. Jyväskylä, Finland.

Van Rosmalen, P., Eikelboom, P., Bloemers, E., Van Winzum, K., & Spronck, P. (2012). Towards a game-chatbot: Extending the interaction in serious games. Proceedings of 6th European Conference on Games Based Learning, 1–8. Cork, Ireland.

Vázquez-Cano, E. (2012). Mobile learning with Twitter to improve linguistic competence at secondary schools. The New Educational Review, 29(3), 134–147

Vázquez-Cano, E. (2014). Mobile distance learning with smartphones and apps in higher education. Educational Sciences: Theory & Practice, 14(4), 1–16. https://doi.org/10.12738/est.2014.4.2012

Vázquez-Cano, E., Fombona, J., & Fernández, A. (2013). Virtual attendance: Analysis of an audiovisual over IP system for distance learning in the Spanish Open University (UNED). The International Review of Research in Open and Distance Learning (IRRODL), 14(3), 402–426. https://doi.org/10.19173/irrodl.v14i3.1430

Vázquez-Cano, E., Holgueras, A. I., & Sáez-López, J. M. (2018). An analysis of the ortographic error found in university students’ asynchronous digital writing. Journal of Computing in Higher Education, 31(1), 1–20. https://doi.org/10.1007/s12528-018-9189-x

Vijayakumar, R., Bhuvaneshwari, B., Adith, S., & Deepika, M. (2019). AI based student bot for academic information system using machine learning. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 5(2), 590–596. https://doi.org/10.32628/CSEIT1952171

Wang, N., Johnson, W. L., Mayer, R. E., Rizzo, P., Shaw, E., & Collins, H. (2008). The politeness effect: Pedagogical agents and learning outcomes. International Journal of Human Computer Studies, 66, 96–112. https://doi.org/10.1016/j.ijhcs.2007.09.003

Weizenbaum, J. (1966). ELIZA—A computer program for the study of natural language communication between man and machine. Communications of the ACM, 9(1), 36–45

Wing Jan, L. (2009). Write ways: Modelling writing forms. Oxford University Press.

Winkler, R., & Soellner, M. (2018). Unleashing the potential of chatbots in education: A state-of-the-art analysis. Proceedings of the 78th Academy of Management Annual Meeting, 1–40. Chicago, Illinois.