Charge transport in thin layers of ferroelectric Hf0.5Zr0.5O2

Pleiades Publishing Ltd - Tập 45 - Trang 350-356 - 2016
O. M. Orlov1, D. R. Islamov2,3, A. G. Chernikova4, M. G. Kozodaev4, A. M. Markeev4, T. V. Perevalov2,3, V. A. Gritsenko2,3, G. Ya. Krasnikov1,5
1JSC Research Institute of Molecular Electronics (NIIME), Zelenograd, Moscow oblast, Russia
2Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
3Novosibirsk State University, Novosibirsk, Russia
4Moskow Institute of Physics and Technology, Dolgoprudny, Moscow oblast, Russia
5Public JSC Research Institute of Molecular Electronics and Micron, Zelenograd, Moscow oblast, Russia

Tóm tắt

The mechanism responsible for the charge transport in thin ferroelectric Hf0.5Zr0.5O2 films has been studied. It is shown that in these films the transport mechanism is phonon-assisted tunneling between the traps. The optimal thickness of dielectric film for TiN/Hf0.5Zr0.5O2/Pt structures is determined. As a result of comparing the experimental current–voltage (I–V) characteristics of TiN/Hf0.5Zr0.5O2/Pt structures with the calculated ones, the thermal and optical energies of the traps are determined and the concentration of the traps is estimated. A comparison between the transport properties of ferroelectric and amorphous Hf0.5Zr0.5O2 films is carried out. It is shown that the charge transport mechanism in this dielectric does not depend on its crystalline phase. A method for decreasing leakage currents in Hf0.5Zr0.5O2 is proposed. A study of the resource of repolarization cycles for TiN/Hf0.5Zr0.5O2/TiN metal-dielectric-metal (MDM) structures fully grown by atomic layer deposition (ALD) has been carried out.

Tài liệu tham khảo

Böscke, T.S., Müller, J., Bräuhaus, D., Schröder, U., and Böttger, U., Ferroelectricity in hafnium oxide thin films, Appl. Phys. Lett., 2011, vol. 99, p. 102903. Mueller, S., Mueller, J., Singh, A., Riedel, S., Sundqvist, J., Schroeder, U., and Mikolajick, T., Incipient ferroelectricity in Al-doped HfO2 thin films, Adv. Function. Mater., 2012, vol. 22, pp. 2412–2417. Müller, J., Polakowski, P., Mueller, S., and Mikolajick, T., Ferroelectric hafnium oxide based materials and devices: assessment of current status and future prospects, ECS J. Solid State Sci. Technol., 2015, vol. 4, no. 5, pp. N30–N35. Müller, J., Böscke, T.S., Schröder, U., Mueller, S., Bräuhaus, D., Böttger, U., Frey, L., and Mikolajick, T., Ferroelectricity in simple binary ZrO2 and HfO2, Nano Lett., 2012, vol. 12, pp. 4318–4323. Müller, J., Böscke, T.S., Bräuhaus, D., Schröder, U., Böttger, U., Sundqvist, J., Kücher, P., Mikolajick, T., and Frey, L., Ferroelectric Hf0.5Zr0.5O2 thin films for nonvolatile memory applications, Appl. Phys. Lett., 2011, vol. 99, p. 112901. Hyuk, P.M., Joon, K.H., Jin, K.Y., Lee, W., Kyeom, K.H., and Seong, H.C., Effect of forming gas annealing on the ferroelectric properties of Hf0.5Zr0.5O2 thin films with and without ce{Pt} electrodes, Appl. Phys. Lett., 2013, vol. 102, p. 112914. Hyuk, P.M., Joon, K.H., Jin, K.Y., Lee, W., Moon, T., and Seong, H.C., Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature, Appl. Phys. Lett., 2013, vol. 102, p. 242905. Chernikova, A., Kozodaev, M., Markeev, A., Matveev, Yu., Negrov, D., and Orlov, O., Confinement-free annealing induced ferroelectricity in Hf0.5Zr0.5O2 thin films, Microelectron. Eng., 2015, vol. 147, p. 15. Park, M.H., Lee, Y.H., Kim, H.J., Kim, Y.J., Moon, T., Kim, K.D., Müller, J., Kersch, A., Schroeder, U., Mikolajick, T., and Hwang, C.S., Ferroelectricity and antiferroelectricity of doped thin HfO2-based films, Adv. Mater., 2015, vol. 27, p. 1811. Cheng, C.-H. and Chin, A., Low-leakage-current DRAM-like memory using one-transistor ferroelectric MOSFET with a Hf-based gate dielectric, IEEE Electron Dev. Lett., 2014, vol. 35, pp. 138–140. Islamov, D.R., Gritsenko, V.A., Cheng, C.H., and Chin, A., Origin of traps and charge transport mechanism in hafnia, Appl. Phys. Lett., 2014, vol. 105, p. 222901. Islamov, D.R., Perevalov, T.V., Gritsenko, V.A., Cheng, C.H., and Chin, A., Charge transport in amorphous Hf0.5Zr0.5O2, Appl. Phys. Lett., 2015, vol. 106, p. 102906. Nasyrov, K.A. and Gritsenko, V.A., Charge transport in dielectrics by tunneling between traps, J. Exp. Theor. Phys., 2011, vol. 112, pp. 1026–1034. Perevalov, T.V., Aliev, V.S., Gritsenko, V.A., Saraev, A.A., Kaichev, V.V., Ivanova, E.V., and Zamoryanskaya, M.V., The origin of 2.7 eV luminescence and 5.2 eV excitation band in hafnium oxide, Appl. Phys. Lett., 2014, vol. 104, p. 071904. Perevalov, T.V., Gulyaev, D.V., Aliev, V.S., Zhuravlev, K.S., Gritsenko, V.A., and Yelisseyev, A.P., The origin of 2.7 eV blue luminescence band in zirconium oxide, J. Appl. Phys., 2014, vol. 116, p. 244109.