Đặc trưng hóa sự thu gọn hình méo của không gian $$L_{p}$$ bằng các phép đo ngẫu nhiên
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abate, M., Raissy, J.: Wolff-Denjoy theorems in nonsmooth convex domains. Ann. Mat. Pura Appl. 193(5), 1503–1518 (2014). (4)
Albiac, F., Kalton, N.J.: Topics in Banach Space Theory 2nd Ed., volume 233 of Graduate Texts in Mathematics. Springer, Cham (2016)
Aldous, D.J.: Subspaces of $$L^{1}$$, via random measures. Trans. Am. Math. Soc. 267(2), 445–463 (1981)
Alessandrini, D., Liu, L., Papadopoulos, A., Su, W.: The horofunction compactification of Teichmüller spaces of surfaces with boundary. Topol. Appl. 208, 160–191 (2016)
Auffinger, A., Damron, M., Hanson, J.: Limiting geodesics for first-passage percolation on subsets of $${\mathbb{Z}}^2$$. Ann. Appl. Probab. 25(1), 373–405 (2015)
Ballmann, W., Gromov, M., Schroeder, V.: Manifolds of Nonpositive Curvature, Volume 61 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston (1985)
Björklund, M.: Central limit theorems for Gromov hyperbolic groups. J. Theor. Probab. 23(3), 871–887 (2010)
Budzyńska, M., Kuczumow, T., Reich, S.: Theorems of Denjoy-Wolff type. Ann. Math. Pura Appl. 192(4), 621–648 (2013). (4)
Crauel, H.: Random Probability Measures on Polish spaces, Volume 11 of Stochastics Monographs. Taylor & Francis, London (2002)
D’Angeli, D., Donno, A.: Metric compactification of infinite Sierpiński carpet graphs. Discrete Math. 339(11), 2693–2705 (2016)
Dunford, N., Schwartz, J.T.: Linear operators. I. General theory. In: Bade, W.G., Bartle, R.G. (eds.) Pure and Applied Mathematics, vol. 7. Interscience Publishers, New York (1958). (Interscience Publishers, Ltd., London )
Edwards, R.E.: Functional analysis: theory and applications. Corrected reprint of the 1965 original. Dover Publications, Inc., New York (1995)
Garling, D.J.H.: Stable Banach spaces, random measures and Orlicz function spaces. In: Heyer H. (ed) Probability Measures on Groups. Lecture Notes in Mathematics, pp. 121–175. Springer, Berlin, Heidelberg (1982)
Gaubert, S., Vigeral, G.: A maximin characterisation of the escape rate of non-expansive mappings in metrically convex spaces. Math. Proc. Camb. Philos. Soc. 152(2), 341–363 (2012)
Gouëzel, S.: Subadditive cocycles and horofunctions. In: Proceedings of the International Congress of Mathematicians (ICM 2018)
Gouëzel, S.: Analyticity of the entropy and the escape rate of random walks in hyperbolic groups. Discrete Anal., pages Paper No. 7, 37, (2017)
Gouëzel, S., Karlsson, A.: Subadditive and multiplicative ergodic theorems. arXiv:1509.07733 (2015)
Gromov, M.: Hyperbolic manifolds, groups and actions. In: Kra, I., Maskit, B. (eds.) Riemann Surfaces and Related Topics, vol. 97, pp. 183–213. Ann. of Math. Stud. Princeton Univ. Press, Princeton (1981)
Gutiérrez, A.W.: On the metric compactification of infinite–dimensional $$\ell _p$$ spaces. Canad. Math. Bull. 62(3), 491–507 (2019)
Gutiérrez, A.W.: The horofunction boundary of finite-dimensional $$\ell _p$$ spaces. Colloq. Math. 155(1), 51–65 (2019)
Kallenberg, O.: Random Measures, Theory and Applications, volume 77 of Probability Theory and Stochastic Modelling. Springer, Cham (2017)
Karlsson, A., Metz, V., Noskov, G.A.: Horoballs in simplices and Minkowski spaces. Int. J. Math. Math. Sci. 20, 23656 (2006)
Karlsson, A.: Non-expanding maps and Busemann functions. Ergodic Theory Dyn. Syst. 21(5), 1447–1457 (2001)
Karlsson, A.: Dynamics of Hilbert nonexpansive maps. In: Papadopoulos, A., Troyanov, M. (eds.) Handbook of Hilbert geometry, pp. 263–273. Eur. Math. Soc., Zürich (2014)
Karlsson, A.: Elements of a metric spectral theory. arXiv:1904.01398, (2018)
Karlsson, A., Ledrappier, F.: Noncommutative ergodic theorems. In: Farb, B., Fisher, D. (eds.) Geometry, Rigidity, and Group Actions, Chicago Lectures in Math., pp. 396–418. Univ. Chicago Press, Chicago (2011)
Karlsson, A., Margulis, G.A.: A multiplicative ergodic theorem and nonpositively curved spaces. Commun. Math. Phys. 208(1), 107–123 (1999)
Klein, T., Nicas, A.: The horofunction boundary of the Heisenberg group. Pac. J. Math. 242(2), 299–310 (2009)
Lemmens, B., Lins, B., Nussbaum, R., Wortel, M.: Denjoy-Wolff theorems for Hilbert’s and Thompson’s metric spaces. J. Anal. Math. 134(2), 671–718 (2018)
Lemmens, B., Walsh, C.: Isometries of polyhedral Hilbert geometries. J. Topol. Anal. 3(2), 213–241 (2011)
Ji, L., Schilling, A.: Toric varieties vs. horofunction compactifications of polyhedral norms. Enseign. Math. 63(3–4), 375–401 (2017)
Maher, J., Tiozzo, G.: Random walks on weakly hyperbolic groups. Journal für die reine und angewandte Mathematik (Crelles Journal) 2018(742), 187–239 (2016)
Rieffel, M.A.: Group $$C^*$$-algebras as compact quantum metric spaces. Doc. Math. 7, 605–651 (2002)
Walsh, C.: The horofunction boundary of finite-dimensional normed spaces. Math. Proc. Camb. Philos. Soc. 142(3), 497–507 (2007)
Walsh, C.: The action of a nilpotent group on its horofunction boundary has finite orbits. Groups Geom. Dyn. 5(1), 189–206 (2011)
Walsh, C.: The horoboundary and isometry group of Thurston’s Lipschitz metric. In: Papadopoulos, A. (ed.) Handbook of Teichmüller Theory, vol. IV, pp. 327–353. Eur. Math. Soc., Zürich (2014)
Walsh, C.: The horofunction boundary and isometry group of the Hilbert geometry. In: Papadopoulos, A., Troyanov, M. (eds.) Handbook of Hilbert Geometry, pp. 127–146. Eur. Math. Soc., Zürich (2014)