Characterizing the Critical Zone Using Borehole and Surface Nuclear Magnetic Resonance

Vadose Zone Journal - Tập 18 Số 1 - Trang 1-18 - 2019
Brady Flinchum1,2, W. Steven Holbrook1,3, A. Parsekian1, Bradley J. Carr1
1Dep. of Geology and Geophysics, Univ. of Wyoming, Laramie, WY, 82071
2Land and Water, Commonwealth Scientific Industrial Research Organization (CSIRO), Adelaide, 5064 SA, Australia
3Dep. of Geosciences, Virginia Tech., Blacksburg, VA, 24060

Tóm tắt

Core Ideas

Unsaturated saprolite, saturated saprolite, and fractured rock have unique NMR responses.

Surface NMR signals will be dominated by water in saturated saprolite.

The heterogeneous nature of fractured rock results in low‐amplitude surface NMR signals.

Understanding critical zone (CZ) structure below the first few meters of Earth's surface is challenging and yet important to understand hydrologic and surface processes that influence life on Earth. Nuclear magnetic resonance (NMR) is an emerging geophysical tool that can quantify the volume of groundwater and pore‐scale properties. Nuclear magnetic resonance has potential to aid in CZ studies, but it can be difficult to collect high‐quality NMR data in weathered and fractured rock. We present data from seven surface NMR soundings and six borehole NMR profiles collected on a weathered and fractured granite in the Laramie Range, Wyoming. First, we show that it is possible to collect high‐quality surface NMR data in a fractured rock. Second, we use the NMR data to delineate the weathering profile into three distinct zones—unsaturated saprolite, saturated saprolite, and fractured rock—and show that the surface NMR signal is dominated by saturated saprolite. Third, we show that lateral heterogeneity significantly reduces the surface NMR signal magnitude, which suggests that the boundary dividing saprolite and fractured rock is laterally heterogeneous. The NMR measurements, when combined with previously collected seismic refraction data, provide a unique opportunity to define the lateral heterogeneity of the boundary dividing saprolite and weathered bedrock in an eroding landscape underlain by crystalline rock.

Từ khóa


Tài liệu tham khảo

10.1038/nature06586

10.1038/ngeo1356

10.1016/j.crte.2012.10.008

10.2113/gselements.3.5.315

10.1130/0016-7606(2002)114<1143:WPMBAA>2.0.CO;2

10.1029/96WR02715

10.1016/j.apgeochem.2008.06.001

10.3997/1873-0604.2005022

10.2136/sssaj2014.04.0135

10.1016/j.geoderma.2003.06.001

10.2136/vzj2010.0108

10.1016/S0341-8162(02)00016-4

10.1007/s10712-014-9304-0

10.1111/j.1365-2389.1959.tb00665.x

10.1103/PhysRev.70.460

10.3997/1873-0604.2010056

10.1029/2008WR006960

Bradley W.C., 1987, Geomorphic systems of North America, 215

Brantley S.L., 2006, 24–26 Oct. 2005

10.1016/0016-7037(87)90070-6

10.1103/PhysRevA.19.2446

10.1002/esp.3409

10.1130/B25088.1

10.1103/PhysRev.94.630

10.1007/s12040-012-0238-y

Chandra S., 2004, A combined approach of Schlumberger and axial pole‐dipole configurations for groundwater exploration in hard‐rock areas, Curr. Sci., 86, 1437

Chapin C.E., 1997, Colorado Front Range guidebook, 101

10.1016/j.jmr.2005.05.001

Coates G.R., 1999, NMR logging principles and applications

10.1063/1.330526

10.1016/j.jhydrol.2006.03.026

Dunn K.‐J., 2002, Nuclear magnetic resonance: Petrophysical and logging applications

10.2113/35.1.113

10.2475/ajs.267.4.510

10.1130/0091-7613(1990)018<0443:EOPISA>2.3.CO;2

10.3997/1873-0604.2016001

10.2136/vzj2015.11.0153

10.2475/03.2010.01

10.1002/hyp.13260

10.1029/2017JF004280

10.1093/petroj/40.12.1771

10.1016/0021-9797(88)90339-6

10.1111/j.1745-6584.1999.tb00972.x

10.1086/629306

10.1016/0926-9851(96)00004-3

10.1002/2016JF003822

10.1130/GSAT57A.1

10.1002/2017WR020835

10.1190/1.1444026

10.1029/94JB00132

10.1093/gji/ggy067

10.1190/geo2016-0567.1

10.1190/geo2012-0488.1

10.1190/geo2013-0452.1

10.3997/1873-0604.2010062

10.1190/geo2011-0160.1

Hayes J.L., 2016, Seismic refraction studies of volcanic crust in Costa Rica and of critical zones in the southern Sierra Nevada, California and Laramie Range, Wyoming

10.1016/j.pnmrs.2008.01.002

10.1038/s41598-019-40819-9

10.1002/esp.3502

10.1029/2006GL026611

10.1029/2009WR008818

10.1144/GSL.QJEG.1985.018.01.06

10.1016/j.jhydrol.2014.02.021

10.1190/geo2012-0461.1

10.1190/1.2399445

10.1016/j.epsl.2019.01.015

Kenyon W.E, 1997, Petrophysical principles of applications of NMR logging, Log Anal, 38, 4

10.1002/esp.3718

10.1002/esp.3424

10.1016/j.chemgeo.2007.07.008

10.1016/S0926-9851(02)00128-3

10.1111/j.1745-6584.2006.00198.x

10.1002/esp.3420

Levitt M.H., 2001, Spin dynamics: Basics of nuclear magnetic resonance

10.1016/S0022-1694(03)00170-7

10.1016/j.epsl.2010.03.010

10.1016/j.jhydrol.2010.12.036

Mears B, 1993, Geology of Wyoming. Wyoming Geol. Surv., 608

10.1063/1.1716296

10.1103/PhysRevE.81.026101

10.1016/j.jappgeo.2008.05.002

10.1029/96WR02985

Moore F.E., 1960, Guide to the geology of Colorado, 217

10.1190/1.3471523

10.3997/1873-0604.2005023

10.1190/geo2015-0461.1

10.1111/j.1365-2478.2006.00596.x

National Research Council, 2001, Basic research opportunities in earth science

10.2138/rmg.2015.80.10

Novakova L., 2012, The matrix porosity and related properties of a leucocratic granite from the Krudum Massif, West Bohemia, Acta Geodyn. Geomater., 9, 521

10.1002/2017GL075976

10.3997/1873-0604.2010043

10.1002/esp.3948

10.1002/2015WR018472

Parsekian A.D., 2017, Borehole nuclear magnetic resonance (NMR) logging 2016–2017. UW Research Data

10.1002/2014RG000465

10.1016/0169-555X(89)90011-1

10.1073/pnas.1404763111

10.1111/gwat.12798

10.1002/esp.3339

10.1002/esp.4052

10.1002/hyp.6963

10.1038/340457a0

10.1190/1.1442837

10.1016/j.enggeo.2004.10.001

10.1126/science.aab2210

10.2118/2045-PA

10.1103/PhysRev.104.563

Ver Ploeg A.J., 2010, Preliminary geologic map of the Sherman Mountains west quadrangle, Albany County, Wyoming. Scale 1:24,000. Open File Rep. 10‐3

10.1002/jgrf.20074

10.1016/j.jappgeo.2014.05.012

10.1190/1.3238366

10.1016/j.jmr.2014.01.012

10.1016/j.jappgeo.2008.03.006

10.3997/1873-0604.2013066

10.1111/gwat.12024

10.1016/j.epsl.2018.12.038

10.1190/1.3507304

10.1144/GSL.SP.1992.066.01.01

10.2113/175.1.21