Characterizing a sensitive compact mid-infrared photoacoustic sensor for methane, ethane and acetylene detection considering changing ambient parameters and bulk composition (N2, O2 and H2O)

Earthquake Spectra - Tập 352 - Trang 130962 - 2022
Jonas Pangerl1,2, Max Müller1,2, Thomas Rück1, Stefan Weigl1, Rudolf Bierl1
1Sensorik-ApplikationsZentrum (SappZ) der Ostbayerischen Technischen Hochschule (OTH) Regensburg, 93053 Regensburg, Germany
2Institut für Analytische Chemie, Chemo und Biosensorik, Universität Regensburg, 93053 Regensburg, Germany

Tài liệu tham khảo

Coelho, 2010, Photoacoustic spectroscopy as a tool for determination of food dyes: comparison with first derivative spectrophotometry, Talanta, 81, 202, 10.1016/j.talanta.2009.11.058 Irudayaraj, 2002, Differentiation and detection of microorganisms using fourier transform infrared photoacoustic spectroscopy, J. Mol. Struct., 606, 181, 10.1016/S0022-2860(01)00869-9 Popa, 2019, Ethylene measurements from sweet fruits flowers using photoacoustic spectroscopy, Molecules, 24, 1144, 10.3390/molecules24061144 Navas, 2012, Human biomarkers in breath by photoacoustic spectroscopy, Clin. Chim. Acta, 413, 1171, 10.1016/j.cca.2012.04.008 Dumitras, 2020, Applications of near infrared photoacoustic spectroscopy for analysis of human respiration: a review, Molecules, 25, 1728, 10.3390/molecules25071728 Weigl, 2020, Photoacoustic detection of acetone in N2 and synthetic air using a high power UV LED, Sens. Actuators B Chem., 316, 10.1016/j.snb.2020.128109 Weigl, 2021, Effects of ambient parameters and cross-sensitivities from O2, CO2 and H2O on the photoacoustic detection of acetone in the UV region, Sens. Actuators, B Chem., 328, 10.1016/j.snb.2020.129001 Rück, 2018, NO2 trace gas monitoring in air using off-beam quartz enhanced photoacoustic spectroscopy (QEPAS) and interference studies towards CO2, H2O and acoustic noise, Sens. Actuators, B Chem., 255, 2462, 10.1016/j.snb.2017.09.039 Rück, 2017, Low-cost photoacoustic NO2 trace gas monitoring at the pptV-level, Sens. Actuators, A Phys., 263, 501, 10.1016/j.sna.2017.06.036 Beck, 2003 Schmohl, 2002, Detection of ammonia by photoacoustic spectroscopy with semiconductor lasers, Appl. Opt., 41, 1815, 10.1364/AO.41.001815 Sussmann, 2005, Validation of ENVISAT/SCIAMACHY columnar methane by solar FTIR spectrometry at the Ground-Truthing Station Zugspitze, Atmos. Chem. Phys., 5, 2419, 10.5194/acp-5-2419-2005 Phillips, 2003, Detection of lung cancer with volatile markers in the breath, Chest, 123, 2115, 10.1378/chest.123.6.2115 Wang, 2009, Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits, Sensors, 9, 8230, 10.3390/s91008230 Peltola, 2013, High sensitivity trace gas detection by cantilever-enhanced photoacoustic spectroscopy using a mid-infrared continuous-wave optical parametric oscillator, Opt. Express, 21, 10240, 10.1364/OE.21.010240 Mueller, 2004, Cw-OPO-based photoacoustic spectrometer for highly sensitive detection of ethane and other volatile organic compounds, Photons Ultrasound.: Imaging Sens., 5320, 138, 10.1117/12.532706 Zhang, 2019, Pptv-Level intra-cavity QEPAS sensor for acetylene detection using a high power Q-switched fiber laser, IEEE Sens. J., 19, 6181, 10.1109/JSEN.2019.2910665 Sampaolo, 2019, Methane, ethane and propane detection using a compact quartz enhanced photoacoustic sensor and a single interband cascade laser, Sens. Actuators, B Chem., 282, 952, 10.1016/j.snb.2018.11.132 Zheng, 2017, Compact photoacoustic module for methane detection incorporating interband cascade light emitting device, Opt. Express, 25, 16761, 10.1364/OE.25.016761 Zheng, 2020, Sub-ppb-level CH 4 detection by exploiting a low-noise differential photoacoustic resonator with a room-temperature interband cascade laser, Opt. Express, 28, 19446, 10.1364/OE.391322 Wu, 2019, Atmospheric CH4 measurement near a landfill using an ICL-based QEPAS sensor with V-T relaxation self-calibration, Sens. Actuators, B Chem., 297, 10.1016/j.snb.2019.126753 Chen, 2020, Tube-cantilever double resonance enhanced fiber-optic photoacoustic spectrometer, Opt. Laser Technol., 123, 10.1016/j.optlastec.2019.105894 Rück, 2017 Besson, 2006 Miklós, 2001, Application of acoustic resonators in photoacoustic trace gas analysis and metrology, 72, 1937 S.W. Rienstra, A. Hirschberg, An Introduction to Acoustics, 2008. Hilico, 1993, High-resolution spectroscopy of (Pentad-Dyad) and (Octad-Pentad) hot bands of methan in supersonic jet, J. Mol. Spectrosc., 161, 435, 10.1006/jmsp.1993.1249 Amyay, 2016, Global analysis of the high temperature infrared emission spectrum of 12CH4 in the dyad (ν 2/ ν 4) region, J. Chem. Phys., 144, 0, 10.1063/1.4939521 Barreiro, 2011, Influence of oxygen on the resonant photoacoustic signal from methane excited at the ν 3 mode, Appl. Phys. B Lasers Opt., 104, 983, 10.1007/s00340-011-4546-8 Hunter, 1973, The model and apparatus for the study of radiatonless processes, 1010 Schlitt, 2005, Near-infrared laser photoacoustic detection of methane: the impact of molecular relaxation, Appl. Phys. B, 82, 319, 10.1007/s00340-005-2076-y Hess, 1980, Vibration → vibration energy transfer in methane, J. Chem. Phys., 72, 5525, 10.1063/1.438970 Doyennette, 1998, Vibrational energy transfer in methane excited to 2ν3 in CH4-N2/O2 mixtures from laser-induced fluorescence measurements, J. Phys. Chem. A, 102, 3849, 10.1021/jp9806462 Barreiro, 2012, GLOMAE, Water-based enhancement of the resonant photoacoustic signal from methane-air samples excited at 3.3 µm, Appl. Phys. B, 108, 369, 10.1007/s00340-012-5018-5 Boursier, 2007, Vibrational relaxation of methane by oxygen collisions: measurements of the near-resonant energy transfer between CH4 and O2 at low temperature, J. Phys. Chem. A, 111, 7022, 10.1021/jp072377y Bass, 1976, Vibrational and rotational relaxation in mixtures of water vapor and oxygen, J. Acoust. Soc. Am., 60, 74, 10.1121/1.381050 De Vasconcelos, 1977, Vibrational relaxation time measurements in CH4 and CH4-rare gas mixtures, Physica, 86A, 490, 10.1016/0378-4371(77)90091-7 Bass, 1973, Kinetic Model for Thermal Blooming in the Atmosphere, Appl. Opt., 12, 1506, 10.1364/AO.12.001506 Huestis, 2006, Vibrational energy transfer and relaxation in O2 and H2O, J. Phys. Chem. A, 110, 6638, 10.1021/jp054889n