Characterization techniques comparison towards a better understanding of different cork-based stoppers types

Journal of Food Engineering - Tập 328 - Trang 111063 - 2022
Juliana Both Engel1, Claudia Leites Luchese1, Isabel Cristina Tessaro1
1Department of Chemical Engineering, Universidade Federal do Rio Grande do Sul (UFRGS). Ramiro Barcelos Street, 2777, Porto Alegre/RS, 90035-007, Brazil

Tài liệu tham khảo

Abenojar, 2014, Effect of surface treatments on natural cork: surface energy, adhesion, and acoustic insulation, Wood Sci. Technol., 48, 207, 10.1007/s00226-013-0599-7 ABNT, 1999 Anjos, 2014, Effect of density on the compression behaviour of cork, Mater. Des., 53, 1089, 10.1016/j.matdes.2013.07.038 AOAC, 2005 2018 Azevedo, 2014, Migration of phenolic compounds from different cork stoppers to wine model solutions: antioxidant and biological relevance, Eur. Food Res. Technol., 239, 951, 10.1007/s00217-014-2292-y Baptista, 1993, Comparative wear testing of flooring materials, Wear 162–, 164, 990, 10.1016/0043-1648(93)90109-Y Barber, 2008, A new twist on tradition: selling the experience to U.S. Wine consumers, J. Culin. Sci. Technol., 6, 325, 10.1080/15428050802523842 Bellamy, 1975 Branco, 2020, Structural features of macromolecular components of cork from Quercus suber L, Holzforschung, 74, 625, 10.1515/hf-2019-0271 Brebu, 2010, Thermal degradation of lignin - a review, Cellul. Chem. Technol., 44, 353 Crouvisier-Urion, 2018, Mechanical properties of agglomerated cork stoppers for sparkling wines: influence of adhesive and cork particle size, Compos. Struct., 203, 789, 10.1016/j.compstruct.2018.06.116 Cunha, 2020, Valorization of cork using subcritical water, Molecules, 25, 10.3390/molecules25204695 da Silva Araujo, 2020, Characterisation and valorisation of the bark of Myrcia eximia DC. Trees from the Amazon rainforest as a source of phenolic compounds, Holzforschung, 74, 989, 10.1515/hf-2019-0294 Demertzi, 2016, Cork stoppers supply chain: potential scenarios for environmental impact reduction, J. Clean. Prod., 112, 1985, 10.1016/j.jclepro.2015.02.072 Fernandes, 2015, Cork – polymer biocomposites : mechanical , structural and thermal properties, Mater. Des., 82, 282, 10.1016/j.matdes.2015.05.040 Ferreira, 2016, Chemical and cellular features of virgin and reproduction cork from Quercus variabilis, Ind. Crop. Prod., 94, 638, 10.1016/j.indcrop.2016.09.038 Fialho, 2001, The effect of cork removal on the radial growth and phenology of young cork oak trees, For. Ecol. Manage., 141, 251, 10.1016/S0378-1127(00)00333-9 Furtado, 2021, Volatile profile of cork as a tool for classification of natural cork stoppers, Talanta, 223, 121698, 10.1016/j.talanta.2020.121698 Gibson, 2005, Biomechanics of cellular solids, J. Biomech., 38, 377, 10.1016/j.jbiomech.2004.09.027 Gil, 2015, New cork-based materials and applications, Materials, 8, 625, 10.3390/ma8020625 Gil, 2009, Cork composites: a review, Materials, 2, 776, 10.3390/ma2030776 Godden, 2001, Wine bottle closures: physical characteristics and effect on composition and sensory properties of a Semillon wine I. Performance up to 20 months post-bottling, Aust. J. Grape Wine Res., 7, 64, 10.1111/j.1755-0238.2001.tb00196.x Goldstein, 2018 González-Adrados, 2008, Wine absorption by cork stoppers, Spanish J. Agric. Res., 6, 645, 10.5424/sjar/2008064-356 González-Hernández, 2014, Quality grading of cork stoppers based on porosity , density and elasticity, Eur. J. Wood Wood Prod., 72, 149, 10.1007/s00107-013-0760-x Graça, 2015, Suberin: the biopolyester at the frontier of plants, Front. Chem., 3, 62, 10.3389/fchem.2015.00062 Kabir, 2013, Effects of chemical treatments on hemp fibre structure, Appl. Surf. Sci., 276, 13, 10.1016/j.apsusc.2013.02.086 Kolattukudy, 1984, Biochemistry and function of cutin and suberin, Can. J. Bot., 62, 2918, 10.1139/b84-391 Lagorce-Tachon, 2016, How does hydration affect the mechanical properties of wine stoppers?, J. Mater. Sci., 51, 4227, 10.1007/s10853-015-9669-6 Lagorce-Tachon, 2015, Mechanical properties of cork: effect of hydration, Mater. Des., 82, 148, 10.1016/j.matdes.2015.05.034 Lagorce-Tachon, 2015, The cork viewed from the inside, J. Food Eng., 149, 214, 10.1016/j.jfoodeng.2014.10.023 Lequin, 2012, Diffusion of oxygen in cork, J. Agric. Food Chem., 60, 3348, 10.1021/jf204655c Lopes, 2001, Variability of cork from Portuguese quercus suber studied by solid-state 13C-NMR and FTIR spectroscopies, Biopolym. - Biospectroscopy Sect., 62, 268, 10.1002/bip.1022 Lopes, 2000, Quantitation of aliphatic suberin in Quercus suber L. Cork by FTIR spectroscopy and solid-state 13 C-NMR spectroscopy, Biopolym. - Biospectroscopy Sect., 57, 344, 10.1002/1097-0282(2000)57:6<344::AID-BIP40>3.0.CO;2-# Lopes, 2012, Impact of different closures on intrinsic sensory wine quality and consumer preferences, Wine Vitic. J., 34 Marques, 2020, Mechanical, thermal and acoustic behaviour of polymer-based composite materials produced with rice husk and expanded cork by-products, Construct. Build. Mater., 239, 117851, 10.1016/j.conbuildmat.2019.117851 Menager, 2019, ’ Green ’ composites prepared from polyfurfuryl alcohol and cork residues : thermal and mechanical properties, Compos. Part A, 124, 105473, 10.1016/j.compositesa.2019.105473 Morange, 1997, Development control of heat shock and chaperone gene expression, CMLS Cell. Mol. Life Sci., 53, 78 Moreira, 2015, Effect of moisture content on curing kinetics of agglomerate cork, Mater. Des., 82, 312, 10.1016/j.matdes.2015.01.001 Mulinari, 2009, Preparation and properties of HDPE/sugarcane bagasse cellulose composites obtained for thermokinetic mixer, Carbohydr. Polym., 75, 317, 10.1016/j.carbpol.2008.07.028 Nguyen, 1981, Thermal analysis of lignocellulosic materials Part I - unmodified materials, J. Macromol. Sci. Rev. Macromol. Chem., C20, 1 2018, OIV statistical report on world vitiviniculture, Int. Organ. Vine Wine, 27 Pereira, 2013, Sealing effectiveness of different types of closures towards volatile phenols and haloanisoles, J. Int. des Sci. la Vigne du Vin, 47, 145 Pereira, 2015, The rationale behind cork properties: a review of structure and chemistry, Bioresources, 10, 10.15376/biores.10.3.Pereira Pereira, 2013, Variability of the chemical composition of cork, Bioresources, 8, 2246, 10.15376/biores.8.2.2246-2256 Pereira, 2007 Pereira, 2007, The chemical composition of cork, Cork, 55, 10.1016/B978-044452967-1/50005-4 Pereira, 1992, The thermochemical degradation of cork, Wood Sci. Technol., 26, 259, 10.1007/BF00200161 Pereira, 1988, Chemical composition and variability of cork from Quercus suber L, Wood Sci. Technol., 22, 211, 10.1007/BF00386015 Pereira, 1996, The evaluation of the quality of cork planks by image analysis, Holzforschung, 50, 111, 10.1515/hfsg.1996.50.2.111 Pereira, 1987, The cellular structure of cork from Quercus suber L, IAWA (Int. Assoc. Wood Anat.) Bull., 8, 213 Pintor, 2012, Use of cork powder and granules for the adsorption of pollutants: a review, Water Res, 46, 3152, 10.1016/j.watres.2012.03.048 Prates, 2007 Rives, 2011, Environmental analysis of the production of natural cork stoppers in southern Europe (Catalonia - Spain), J. Clean. Prod., 19, 259, 10.1016/j.jclepro.2010.10.001 Rosa, 1993, Water absorption by cork, Wood Fiber Sci., 25, 339 Rosa, 1988, Rate effects on the compression and recovery of dimensions of cork, J. Mater. Sci., 23, 879, 10.1007/BF01153983 Sánchez-González, 2018, Assessing the percentage of cork that a stopper should have from a mechanical perspective, Food Packag. Shelf Life, 18, 212, 10.1016/j.fpsl.2018.10.009 Santos, 2013, Cork suberin molecular structure : stereochemistry of the C 18 epoxy and vic-diol ω-hydroxyacids and α,ω-diacids analyzed by NMR, J. Agric. Food Chem., 61, 7038, 10.1021/jf400577k Sefton, 2005, Compounds causing cork taint and the factors affecting their transfer from natural cork closures to wine - a review, Aust. J. Grape Wine Res., 11, 226, 10.1111/j.1755-0238.2005.tb00290.x Silva, 2003, Evaluation of the performances of synthetic and cork stoppers up to 24 months post-bottling, Eur. Food Res. Technol., 216, 529, 10.1007/s00217-003-0687-2 Silva, 2005, vol. 50, 345 Sitte, 1962, Zum Feinbau der Suberinschichten im Flaschenkork, Protoplasma, 54, 555, 10.1007/BF01252642 Sousa, 2016, Unravelling the distinct crystallinity and thermal properties of suberin compounds from Quercus suber and Betula pendula outer barks, Int. J. Biol. Macromol., 93, 686, 10.1016/j.ijbiomac.2016.09.031 Van Soest, 1963, Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin, JAOAC (J. Assoc. Off. Anal. Chem.), 46, 829 Varea, 2001, Polyphenols susceptible to migrate from cork stoppers to wine, Eur. Food Res. Technol., 213, 56, 10.1007/s002170100327 Vercelheze, 2012, Properties of baked foams based on cassava starch, sugarcane bagasse fibers and montmorillonite, J. Polym. Environ., 87, 1302 Vilela, 2013, Novel sustainable composites prepared from cork residues and biopolymers, Biomass Bioenergy, 55, 148, 10.1016/j.biombioe.2013.01.029 Vlachos, 2007, Development and evaluation of alternative processes for sterilization and deodorization of cork barks and natural cork stoppers, Eur. Food Res. Technol., 225, 653, 10.1007/s00217-006-0461-3 Wang, 2020, Converting industrial waste cork to biochar as Cu (II) adsorbent via slow pyrolysis, Waste Manag, 105, 102, 10.1016/j.wasman.2020.01.041 Zheng, 2016, Analysis of xrd spectral structure and carbonization of the biochar preparation, Spectrosc. Spectr. Anal., 36, 3355