Characterization of the aggregates formed during recombinant protein expression in bacteria

BMC Biochemistry - Tập 6 Số 1 - 2005
Andrea Schrödel1, Ario de Marco1
1Protein Expression Core Facility, EMBL, Meyerhofstr. 1, D-69117, Heidelberg, Germany

Tóm tắt

Abstract Background The first aim of the work was to analyze in detail the complexity of the aggregates formed upon overexpression of recombinant proteins in E. coli. A sucrose step gradient succeeded in separating aggregate subclasses of a GFP-GST fusion protein with specific biochemical and biophysical features, providing a novel approach for studying recombinant protein aggregates. Results The total lysate separated into 4 different fractions whereas only the one with the lowest density was detected when the supernatant recovered after ultracentrifugation was loaded onto the sucrose gradient. The three further aggregate sub-classes were otherwise indistinctly precipitated in the pellet. The distribution of the recombinant protein among the four subclasses was strongly dependent on the DnaK availability, with larger aggregates formed in Dnak- mutants. The aggregation state of the GFP-GST recovered from each of the four fractions was further characterized by examining three independent biochemical parameters. All of them showed an increased complexity of the recombinant protein aggregates starting from the top of the sucrose gradient (lower mass aggregates) to the bottom (larger mass aggregates). These results were also confirmed by electron microscopy analysis of the macro-structure formed by the different aggregates. Large fibrils were rapidly assembled when the recombinant protein was incubated in the presence of cellular extracts, but the GFP-GST fusion purified soon after lysis failed to undergo amyloidation, indicating that other cell components probably participate in the active formation of large aggregates. Finally, we showed that aggregates of lower complexity are more efficiently disaggregated by a combination of molecular chaperones. Conclusion An additional analytical tool is now available to investigate the aggregation process and separate subclasses by their mass. It was possible to demonstrate the complexity of the aggregation pattern of a recombinant protein expressed in bacteria and to characterize biochemically the different aggregate subclasses. Furthermore, we have obtained evidence that the cellular environment plays a role in the development of the aggregates and the problem of the artifact generation of aggregates has been discussed using in vitro models. Finally, the possibility of separating aggregate fractions with different complexities offers new options for biotechnological strategies aimed at improving the yield of folded and active recombinant proteins.

Từ khóa


Tài liệu tham khảo

Harper JD, Lansbury PT: Models of amyloyd seeding in Alzheimer's disease and Scrapie. Annu Rev Biochem. 1997, 66: 385-407. 10.1146/annurev.biochem.66.1.385.

Kopito RR: Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 2000, 10: 524-530. 10.1016/S0962-8924(00)01852-3.

Carrió MM, Villaverde A: Protein aggregation as bacterial inclusion bodies is reversible. FEBS Lett. 2001, 489: 29-33. 10.1016/S0014-5793(01)02073-7.

Veinger L, Diamant S, Buchner J, Goloubinoff P: The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J Biol Chem. 1998, 273: 11032-11037. 10.1074/jbc.273.18.11032.

Mogk A, Tomoyasu T, Goloubinoff P, Rüdiger S, Röder D, Langen H, Bukau B: Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J. 1999, 18: 6934-6949. 10.1093/emboj/18.24.6934.

Goloubinoff P, Mogk A, Ben Zvi AP, Tomoyasu T, Bukau B: Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc Natl Acad Sci USA. 1999, 96: 13732-13737. 10.1073/pnas.96.24.13732.

Mogk A, Deuerling E, Vorderwulbecke S, Vierling E, Bukau B: Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Mol Microbiol. 2003, 50: 585-595. 10.1046/j.1365-2958.2003.03710.x.

de Marco A, De Marco V: Bacteria co-transformed with recombinant proteins and chaperones cloned in independent plasmids are suitable for expression tuning. J Biotechnol. 2004, 109: 45-52. 10.1016/j.jbiotec.2003.10.025.

Steczko J, Donoho GA, Dixon JE, Sugimoto T, Axelrod B: Effect of ethanol and low-temperature culture on expression of soybean lipoxygenase L-1 in Escherichia coli. Prot Expr Purif. 1991, 2: 221-227. 10.1016/1046-5928(91)90075-T.

Bowden GA, Peredes AM, Georgiou G: Structure and morphology of protein inclusion bodies in Escherichia coli. Biotechnol (NY). 1991, 9: 725-730. 10.1038/nbt0891-725.

Valax P, Georgiou G: Molecular characterization of beta-lactamase inclusion bodies produced in Escherichia coli. 1. Composition. Biotechnol Prog. 1993, 9: 539-547. 10.1021/bp00023a014.

Speed MA, Wang DIC, King J: Specific aggregation of partially folded polypeptide chains: the molecular basis of inclusion body composition. Nat Biotechnol. 1996, 14: 1283-1287. 10.1038/nbt1096-1283.

Carrió MM, Cubarsi R, Villaverde A: Fine architecture of bacterial inclusion bodies. FEBS Lett. 2000, 471: 7-11. 10.1016/S0014-5793(00)01357-0.

Carrió MM, Gonzalez-Montalban N, Vera A, Villaverde A, Ventura S: Amyloid properties of bacterial inclusion bodies. J Mol Biol. 2005,

Ben Zvi AP, Goloubinoff P: Proteinaceous infectious behavior in non-pathogenic proteins is controlled by molecular chaperones. J Biol Chem. 2002, 277: 49422-49427. 10.1074/jbc.M209163200.

Sachdev D, Chirgwin JM: Properties of soluble fusions between mammalian aspartic proteases and bacterial maltose-binding protein. Biochem J. 1999, 338: 77-81. 10.1042/0264-6021:3380077.

Nominé Y, Ristriani T, Laurent C, Lefevre J-F, Weiss E, Travé G: Formation of soluble inclusion bodies by HPV E6 oncoprotein fused to maltose-binding protein. Prot Expr Purif. 2001, 23: 22-32. 10.1006/prep.2001.1451.

Stegemann J, Ventzki R, Schrödel A, de Marco A: Comparative analysis of protein aggregates by blue native electrophoresis and subsequent SDS-PAGE in a three-dimensional geometry gel. Proteomics. 2005, 5: 2002-9. 10.1002/pmic.200401091.

Carrió MM, Corchero JL, Villaverde A: Dynamics of in vivo protein aggregation: building inclusion bodies in recombinant bacteria. FEMS Microbiol Lett. 1998, 169: 9-15. 10.1016/S0378-1097(98)00444-3.

Oberg K, Chrunyk BA, Wetzel R, Fink AL: Native-like secondary structure in interleukin-1β inclusion bodies by attenuated total reflectance FT-IR. Biochemistry. 1994, 33: 2628-2634. 10.1021/bi00175a035.

Tokatlidis K, Dhurjati P, Millet J, Beguin P, Albert JP: High activity of inclusion bodies formed in Escherichia coli overproducing Clostridium thermocellum endoglucanase D. FEBS Lett. 1991, 282: 205-208. 10.1016/0014-5793(91)80478-L.

Nominé Y, Ristriani T, Laurent C, Lefevre J-F, Weiss E, Travé G: A strategy for optimizing the monodispersity of fusion proteins: application to purification of recombinant HPV E6 oncoprotein. Prot Engineer. 2001, 14: 297-305. 10.1093/protein/14.4.297.

LeVine H: Quantification of beta-sheet amyloid fibril structures with ThioflavinT. Methods Enzymol. 1999, 309: 274-284.

Busby TF, Atha DH, Ingham KC: Thermal denaturation of antithrombin III. Stabilization by heparin and lyotropic anions. J Biol Chem. 1981, 256: 12140-12147.

Linding R, Schymkowitz J, Rousseau F, Diella F, Serrano L: A comparative study of the relationship between protein structure and beta-aggregation in globular and intrinsically disordered proteins. J Mol Biol. 2004, 342: 345-353. 10.1016/j.jmb.2004.06.088.

Dobson CM: Protein folding and misfolding. Nature. 2003, 426: 884-890. 10.1038/nature02261.

Caughey B, Lansbury PTJr: Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci. 2003, 26: 267-298. 10.1146/annurev.neuro.26.010302.081142.

Holm Nielsen E, Nybo M, Svehag S-E: Electron microscopy of prefibrillar structures and amyloid fibrils. Methods Enzymol. 1999, 309: 491-496.

Calamai M, Canale C, Relini A, Stefani M, Chiti F, Dobson CM: Reversal of protein aggregation provides evidence for multiple aggregated states. J Mol Biol. 2005, 346: 603-616. 10.1016/j.jmb.2004.11.067.

Dyson MR, Shadbolt SP, Vincent KJ, Perera RL, McCafferty J: Production of soluble mammalian proteins in Escherichia coli: identification of protein features that correlate with successful expression. BMC Biotechnology. 2004, 4: 32-10.1186/1472-6750-4-32.

Carrió MM, Villaverde A: Role of molecular chaperones in inclusion body formation. FEBS Lett. 2003, 537: 215-221. 10.1016/S0014-5793(03)00126-1.

Garcia-Mata R, Bebok Z, Sorscher EJ, Sztul ES: Characterization and dynamics of aggresome formation by a cytosolic GFP chimera. J Cell Biol. 1999, 146: 1239-1254. 10.1083/jcb.146.6.1239.

Johnston JA, Wand CL, Kopito RR: Aggresomes: a cellular response to misfolded proteins. J Cell Biol. 1998, 143: 1883-1898. 10.1083/jcb.143.7.1883.

Stefani M, Dobson CM: Protein aggregation and aggregate toxicity: new insights into ptotein folding, misfolding diseases and biological evolution. J Mol Med. 2003, 81: 678-699. 10.1007/s00109-003-0464-5.

Mogk A, Schlieker C, Friedrich KL, Schönfeld H-J, Vierling E, Bukau B: Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK. J Biol Chem. 2003, 278: 31033-31042. 10.1074/jbc.M303587200.