Mô tả Động lực Hữu cơ trong Não bộ Trẻ sơ sinh trong các Trạng thái Ngủ REM và NREM thông qua Phân tích Microstate

Brain Topography - Tập 34 - Trang 555-567 - 2021
Mohammad Khazaei1, Khadijeh Raeisi1, Pierpaolo Croce1, Gabriella Tamburro1,2, Anton Tokariev3,4, Sampsa Vanhatalo3,4, Filippo Zappasodi1,5, Silvia Comani1,2
1Department of Neuroscience, Imaging and Clinical Sciences, University “Gabriele d’Annunzio” of Chieti–Pescara, Chieti, Italy
2Behavioral Imaging and Neural Dynamics Center, University “Gabriele d'Annunzio” of Chieti–Pescara, Chieti, Italy
3Department of Clinical Neurophysiology, BABA Center, Pediatric Research Center, Children’s Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
4Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
5Institute for Advanced Biomedical Technologies, University “Gabriele d'Annunzio” of Chieti–Pescara, Chieti, Italy

Tóm tắt

Trẻ sơ sinh dành phần lớn thời gian của họ để ngủ. Trong khi ngủ, não bộ của họ trải qua những thay đổi nhanh chóng trong tổ chức chức năng. Phân tích microstate cho phép ghi lại những thay đổi động lực nhanh chóng xảy ra trong tổ chức chức năng của não bằng cách đại diện cho những đặc điểm không gian-thời gian thay đổi của điện não đồ (EEG) dưới dạng một chuỗi các hình thái da đầu ngắn hạn - các microstate. Trong nghiên cứu này, chúng tôi đã mô hình hóa EEG liên tục của trẻ sơ sinh thành chuỗi của một số lượng hạn chế các microstate và điều tra liệu các đặc điểm microstate được trích xuất có bị biến đổi trong giấc ngủ REM và NREM (thường được biết đến là các trạng thái ngủ chủ động và yên tĩnh - AS và QS - ở trẻ sơ sinh) và phụ thuộc vào băng tần tần số EEG. Các ghi chép EEG 19 kênh từ 60 trẻ sơ sinh khỏe mạnh đủ tháng đã được phân tích bằng cách sử dụng phiên bản sửa đổi của thuật toán phân cụm k-means. Kết quả cho thấy khoảng 70% phương sai trong các tập dữ liệu có thể được mô tả bằng 7 mẫu microstate chiếm ưu thế. Thời gian trung bình và tần suất trung bình của các microstate chiếm ưu thế khác nhau một cách có ý nghĩa trong hai trạng thái ngủ. Phân tích cú pháp microstate cho thấy các chuỗi microstate đặc trưng cho AS và QS có cấu trúc phi ngẫu nhiên cụ thể mà khác nhau trong hai trạng thái ngủ. Phân tích microstate của EEG trẻ sơ sinh trong các băng tần tần số cụ thể cho thấy có sự phụ thuộc rõ ràng của phương sai được giải thích vào tần số. Tóm lại, các phát hiện của chúng tôi cho thấy rằng (1) động lực không gian-thời gian của EEG trẻ sơ sinh có thể được mô tả bằng các chuỗi phi ngẫu nhiên của một số lượng hạn chế các mẫu microstate; (2) động lực não được mô tả bởi các mẫu microstate này phụ thuộc vào tần số; (3) các đặc điểm của các chuỗi microstate có thể phân biệt tốt các tình trạng sinh lý đặc trưng cho AS và QS.

Từ khóa

#microstate #EEG #trẻ sơ sinh #giấc ngủ REM #giấc ngủ NREM #phân tích không gian-thời gian

Tài liệu tham khảo

Allegrini P, Paradisi P, Menicucci D, Gemignani A (2010) Fractal complexity in spontaneous EEG metastable-state transitions: new vistas on integrated neural dynamics. Front Physiol. https://doi.org/10.3389/fphys.2010.00128 André M, Lamblin M-D, d’Allest AM et al (2010) Electroencephalography in premature and full-term infants. Developmental features and glossary. Neurophysiol Clin Clin Neurophysiol 40:59–124. https://doi.org/10.1016/j.neucli.2010.02.002 Arviv O, Goldstein A, Shriki O (2019) Neuronal avalanches and time-frequency representations in stimulus-evoked activity. Sci Rep 9:13319. https://doi.org/10.1038/s41598-019-49788-5 Benayoun M, Kohrman M, Cowan J, van Drongelen W (2010) EEG, temporal correlations, and avalanches. J Clin Neurophysiol 27:458–464. https://doi.org/10.1097/WNP.0b013e3181fdf8e5 Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc 57:289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x Bennet L, Walker DW, Horne RSC (2018) Waking up too early—the consequences of preterm birth on sleep development. J Physiol 596:5687–5708. https://doi.org/10.1113/JP274950 Bréchet L, Brunet D, Perogamvros L et al (2020) EEG microstates of dreams. Sci Rep 10:17069. https://doi.org/10.1038/s41598-020-74075-z Britz J, Van De Ville D, Michel CM (2010) BOLD correlates of EEG topography reveal rapid resting-state network dynamics. Neuroimage 52:1162–1170. https://doi.org/10.1016/j.neuroimage.2010.02.052 Brodbeck V, Kuhn A, von Wegner F et al (2012) EEG microstates of wakefulness and NREM sleep. Neuroimage 62:2129–2139. https://doi.org/10.1016/j.neuroimage.2012.05.060 Cantero JL, Atienza M, Salas RM, Gómez CM (1999) Brain spatial microstates of human spontaneous alpha activity in relaxed wakefulness, drowsiness period, and REM sleep. Brain Topogr 11:257–263. https://doi.org/10.1023/A:1022213302688 Croce P, Quercia A, Costa S, Zappasodi F (2020) EEG microstates associated with intra- and inter-subject alpha variability. Sci Rep 10:2469. https://doi.org/10.1038/s41598-020-58787-w Freeman WJ, Holmes MD, Burke BC, Vanhatalo S (2003) Spatial spectra of scalp EEG and EMG from awake humans. Clin Neurophysiol 114:1053–1068. https://doi.org/10.1016/s1388-2457(03)00045-2 González JJ, Mañas S, De Vera L et al (2011) Assessment of electroencephalographic functional connectivity in term and preterm neonates. Clin Neurophysiol 122:696–702. https://doi.org/10.1016/j.clinph.2010.08.025 Grigg-Damberger MM (2016) The visual scoring of sleep in infants 0 to 2 months of age. J Clin Sleep Med 12:429–445. https://doi.org/10.5664/jcsm.5600 Iyer KK, Roberts JA, Hellström-Westas L et al (2015) Cortical burst dynamics predict clinical outcome early in extremely preterm infants. Brain 138:2206–2218. https://doi.org/10.1093/brain/awv129 Jannesari M, Saeedi A, Zare M et al (2020) Stability of neuronal avalanches and long-range temporal correlations during the first year of life in human infants. Brain Struct Funct 225:1169–1183. https://doi.org/10.1007/s00429-019-02014-4 Javed E, Croce P, Zappasodi F, Gratta CD (2019) Hilbert spectral analysis of EEG data reveals spectral dynamics associated with microstates. J Neurosci Methods 325:108317. https://doi.org/10.1016/j.jneumeth.2019.108317 Javed E, Croce P, Zappasodi F, Del Gratta C (2020) Normal aging: alterations in scalp EEG using broadband and band-resolved topographic maps. Front Phys. https://doi.org/10.3389/fphy.2020.00082 Jung T-P, Makeig S, Humphries C et al (2000) Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37:163–178. https://doi.org/10.1111/1469-8986.3720163 Jurcak V, Tsuzuki D, Dan I (2007) 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage 34:1600–1611. https://doi.org/10.1016/j.neuroimage.2006.09.024 Khanna A, Pascual-Leone A, Michel CM, Farzan F (2015) Microstates in resting-state EEG: current status and future directions. Neurosci Biobehav Rev 49:105–113. https://doi.org/10.1016/j.neubiorev.2014.12.010 Koenig T, Prichep L, Lehmann D et al (2002) Millisecond by millisecond, year by year: normative EEG microstates and developmental stages. Neuroimage 16:41–48. https://doi.org/10.1006/nimg.2002.1070 Koolen N, Dereymaeker A, Räsänen O et al (2014) Interhemispheric synchrony in the neonatal EEG revisited: activation synchrony index as a promising classifier. Front Hum Neurosci. https://doi.org/10.3389/fnhum.2014.01030 Kozberg MG, Hillman EMC (2016) Neurovascular coupling develops alongside neural circuits in the postnatal brain. Neurogenesis 3:e1244439. https://doi.org/10.1080/23262133.2016.1244439 Lehmann D, Skrandies W (1980) Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephalogr Clin Neurophysiol 48:609–621. https://doi.org/10.1016/0013-4694(80)90419-8 Lehmann D, Ozaki H, Pal I (1987) EEG alpha map series: brain micro-states by space-oriented adaptive segmentation. Electroencephalogr Clin Neurophysiol 67:271–288. https://doi.org/10.1016/0013-4694(87)90025-3 Lehmann D, Faber PL, Galderisi S et al (2005) EEG microstate duration and syntax in acute, medication-naïve, first-episode schizophrenia: a multi-center study. Psychiatry Res 138:141–156. https://doi.org/10.1016/j.pscychresns.2004.05.007 Lubsen J, Vohr B, Myers E et al (2011) Microstructural and functional connectivity in the developing preterm brain. Semin Perinatol 35:34–43. https://doi.org/10.1053/j.semperi.2010.10.006 Matic V, Cherian PJ, Koolen N et al (2015) Objective differentiation of neonatal EEG background grades using detrended fluctuation analysis. Front Hum Neurosci. https://doi.org/10.3389/fnhum.2015.00189 Meisel C, Olbrich E, Shriki O, Achermann P (2013) Fading signatures of critical brain dynamics during sustained wakefulness in humans. J Neurosci 33:17363–17372. https://doi.org/10.1523/JNEUROSCI.1516-13.2013 Michel CM, Koenig T (2017) EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: a review. Neuroimage. https://doi.org/10.1016/j.neuroimage.2017.11.062 Michel CM, Koenig T (2018) EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: a review. Neuroimage 180:577–593. https://doi.org/10.1016/j.neuroimage.2017.11.062 Michel CM, Koenig T, Brandeis D et al (2009) Electrical neuroimaging. Cambridge University Press, Cambridge Milz P, Faber PL, Lehmann D et al (2016) The functional significance of EEG microstates—associations with modalities of thinking. Neuroimage 125:643–656. https://doi.org/10.1016/j.neuroimage.2015.08.023 Milz P, Pascual-Marqui RD, Achermann P et al (2017) The EEG microstate topography is predominantly determined by intracortical sources in the alpha band. Neuroimage 162:353–361. https://doi.org/10.1016/j.neuroimage.2017.08.058 Murray MM, Brunet D, Michel CM (2008) Topographic ERP analyses: a step-by-step tutorial review. Brain Topogr 20:249–264. https://doi.org/10.1007/s10548-008-0054-5 Namazi H, Jafari S (2018) Estimating of brain development in newborns by fractal analysis of sleep electroencephalographic (eeg) signal. Fractals 27:1950021. https://doi.org/10.1142/S0218348X1950021X Nishida K, Morishima Y, Yoshimura M et al (2013) EEG microstates associated with salience and frontoparietal networks in frontotemporal dementia, schizophrenia and Alzheimer’s disease. Clin Neurophysiol 124:1106–1114. https://doi.org/10.1016/j.clinph.2013.01.005 Odabaee M, Freeman WJ, Colditz PB et al (2013) Spatial patterning of the neonatal EEG suggests a need for a high number of electrodes. Neuroimage 68:229–235. https://doi.org/10.1016/j.neuroimage.2012.11.062 Omidvarnia A, Fransson P, Metsäranta M, Vanhatalo S (2014) Functional bimodality in the brain networks of preterm and term human newborns. Cereb Cortex 24:2657–2668. https://doi.org/10.1093/cercor/bht120 Palva JM, Zhigalov A, Hirvonen J et al (2013) Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws. Proc Natl Acad Sci U S A 110:3585–3590. https://doi.org/10.1073/pnas.1216855110 Pascual-Marqui RD, Michel CM, Lehmann D (1995) Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Trans Biomed Eng 42:658–665. https://doi.org/10.1109/10.391164 Pedersen M, Omidvarnia A, Curwood EK et al (2017) The dynamics of functional connectivity in neocortical focal epilepsy. Neuroimage 15:209–214. https://doi.org/10.1016/j.nicl.2017.04.005 Petermann T, Thiagarajan TC, Lebedev MA et al (2009) Spontaneous cortical activity in awake monkeys composed of neuronal avalanches. PNAS 106:15921–15926. https://doi.org/10.1073/pnas.0904089106 Priesemann V, Valderrama M, Wibral M, Le Van QM (2013) Neuronal avalanches differ from wakefulness to deep sleep–evidence from intracranial depth recordings in humans. PLoS Comput Biol 9:e1002985. https://doi.org/10.1371/journal.pcbi.1002985 Rajkumar R, Brambilla CR, Veselinović T et al (2020) Excitatory-inhibitory balance within EEG microstates and resting-state fMRI networks: assessed via simultaneous PET-MR-EEG imaging. bioRxiv. https://doi.org/10.1101/2020.05.22.109413 Seitzman BA, Abell M, Bartley SC et al (2017) Cognitive manipulation of brain electric microstates. Neuroimage 146:533–543. https://doi.org/10.1016/j.neuroimage.2016.10.002 Shriki O, Alstott J, Carver F et al (2013) Neuronal avalanches in the resting MEG of the human brain. J Neurosci 33:7079–7090. https://doi.org/10.1523/JNEUROSCI.4286-12.2013 Tokariev A, Palmu K, Lano A et al (2012) Phase synchrony in the early preterm EEG: Development of methods for estimating synchrony in both oscillations and events. Neuroimage 60:1562–1573. https://doi.org/10.1016/j.neuroimage.2011.12.080 Tokariev A, Videman M, Palva JM, Vanhatalo S (2016) Functional brain connectivity develops rapidly around term age and changes between vigilance states in the human newborn. Cereb Cortex 26:4540–4550. https://doi.org/10.1093/cercor/bhv219 Tokariev A, Roberts JA, Zalesky A et al (2019a) Large-scale brain modes reorganize between infant sleep states and carry prognostic information for preterms. Nat Commun 10:2619. https://doi.org/10.1038/s41467-019-10467-8 Tokariev A, Stjerna S, Lano A et al (2019b) Preterm birth changes networks of newborn cortical activity. Cereb Cortex 29:814–826. https://doi.org/10.1093/cercor/bhy012 Tomescu MI, Rihs TA, Roinishvili M et al (2015) Schizophrenia patients and 22q11.2 deletion syndrome adolescents at risk express the same deviant patterns of resting state EEG microstates: a candidate endophenotype of schizophrenia. Schizophr Res 2:159–165. https://doi.org/10.1016/j.scog.2015.04.005 Tononi G, Massimini M (2008) Why does consciousness fade in early sleep? Ann N Y Acad Sci 1129:330–334. https://doi.org/10.1196/annals.1417.024 Tóth B, Urbán G, Háden GP et al (2017) Large-scale network organization of EEG functional connectivity in newborn infants. Hum Brain Mapp 38:4019–4033. https://doi.org/10.1002/hbm.23645 Vanhatalo S, Kaila K (2006) Development of neonatal EEG activity: from phenomenology to physiology. Semin Fetal Neonatal Med 11:471–478. https://doi.org/10.1016/j.siny.2006.07.008 Vanhatalo S, Palva JM, Andersson S et al (2005) Slow endogenous activity transients and developmental expression of K+-Cl- cotransporter 2 in the immature human cortex. Eur J Neurosci 22:2799–2804. https://doi.org/10.1111/j.1460-9568.2005.04459.x Vellante F, Ferri F, Baroni G et al (2020) Euthymic bipolar disorder patients and EEG microstates: a neural signature of their abnormal self experience? J Affect Disord 272:326–334. https://doi.org/10.1016/j.jad.2020.03.175 Xu J, Pan Y, Zhou S et al (2020) EEG microstates are correlated with brain functional networks during slow-wave sleep. Neuroimage 215:116786. https://doi.org/10.1016/j.neuroimage.2020.116786