Đặc trưng các chuỗi chứa miền NBS mới trong lúa mì và việc sử dụng chúng, in silico, cho khai thác R-gene trên quy mô genome

Springer Science and Business Media LLC - Tập 289 - Trang 599-613 - 2014
Dhia Bouktila1,2, Yosra Habachi-Houimli1, Yosra Khalfallah1, Maha Mezghani-Khemakhem1, Mohamed Makni1, Hanem Makni1,3
1Unité de Recherche Génomique des Insectes Ravageurs des Cultures d’intérêt agronomique (GIRC, UR11ES10), Faculté des Sciences de Tunis, Université de Tunis El-Manar, Tunis, Tunisia
2Institut Supérieur de Biotechnologie de Béja (ISBB), Université de Jendouba, Béja, Tunisia
3Institut Supérieur de l’Animation pour la Jeunesse et la Culture (ISAJC), Université de Tunis, Bir-El-Bey, Tunisia

Tóm tắt

Trong việc cải thiện cây trồng, việc tách biệt, nhân bản và chuyển giao các gen kháng bệnh (gen R) là một mục tiêu tối ưu thường bắt đầu từ các anal này R-gene (RGA) do cấu trúc của chúng xác định. Đối với lúa mì bánh, những tiến bộ gần đây trong giải trình tự gen đang hỗ trợ cho những nỗ lực của các nhà di truyền học lúa mì trên toàn thế giới. Trong số các gen R ở lúa mì, các gen mã hóa vị trí liên kết nucleotide (NBS) đại diện cho một lớp chính. Trong nghiên cứu này, chúng tôi đã sử dụng phương pháp phản ứng chuỗi polymerase (PCR) để khuếch đại và nhân bản các RGA loại NBS từ một giống lúa mì bánh, 'Salambo 80.' Bốn trình tự ORF hoàn chỉnh mới cho thấy sự tương đồng với các gen R/RGA đã được báo cáo trước đây đã được sử dụng cho các phân tích in silico. Trong bước đầu tiên, nơi mà các phân tích tập trung vào miền NBS, các trình tự này đã được phân loại theo hệ phả thành hai nhóm khác nhau: một nhóm gần với các protein kháng bệnh rỉ lá Lr21; và một nhóm thứ hai tương tự như các protein kháng bệnh giun bã. Trong bước thứ hai, các trình tự này được sử dụng như các hạt giống ban đầu để đi lên và xuống miền NBS. Quy trình này cho phép xác định 8 locus có kích thước từ 2,115 đến 7,653 bp. Dự đoán gen ab initio xác định 8 mô hình gen, trong số đó hai gen có ORF hoàn chỉnh. Mặc dù khảo sát GenBank xác nhận thuộc về hai nhóm, việc phân loại tiếp theo sử dụng dữ liệu genom và proteomics IWGSC cho thấy rằng 8 mô hình gen được báo cáo trong nghiên cứu này là duy nhất và các locus của chúng khớp với các giàn giáo trên cánh nhiễm sắc thể 1AS, 1BS, 4BS và 1DS. Mô hình gen nằm trên 1DS là pseudo-Lr21 cho thấy có cấu trúc miền NBS-LRR, trong khi mối liên quan tiềm năng của các RGA, được báo cáo ở đây, được thảo luận. Nghiên cứu này đã tạo ra các locus và mô hình giống gen R mới trong bộ gen lúa mì và cung cấp những bước đầu tiên hướng tới việc làm rõ thêm vai trò của chúng trong khả năng kháng bệnh của lúa mì.

Từ khóa

#lúa mì #gen kháng bệnh #miền NBS #PCR #tính đa dạng hệ phả #mô hình gen #khai thác R-gene #giải trình tự gen

Tài liệu tham khảo

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402 Bai J, Pennill LA, Ning J, Lee SW, Ramalingam J, Webb CA, Zhao B, Sun Q, Nelson JC, Leach JE, Hulbert SH (2002) Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Res 12:1871–1884 Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In: Proceedings of the second international conference on intelligent systems for molecular biology. AAAI Press, Menlo Park, pp 28–36 Boissot N, Thomas S, Sauvion N, Marchal C, Pavis C, Dogimont C (2010) Mapping and validation of QTLs for resistance to aphids and whiteflies in melon. Theor Appl Genet 121:9–20 Bouktila D, Mezghani M, Marrakchi M, Makni H (2005) Identification of wheat sources resistant to Hessian fly, Mayetiola destructor (Diptera: Cecidomyiidae), in Tunisia. Int J Agric Biol 7:799–803 Bouktila D, Mezghani M, Marrakchi M, Makni H (2006) Characterization of wheat random amplified polymorphic DNA markers associated with the H11 hessian fly resistance gene. J Integr Plant Biol 48:958–964 Bouktila D, Kharrat I, Mezghani-Khemakhem M, Makni H, Makni M (2012) Preliminary identification of sources of resistance to the greenbug, Schizaphis graminum Rondani (Hemiptera: Aphididae) among a collection of Tunisian bread wheat lines. Rom Agric Res 29:115–120 Bozkurt O, Hakki EE, Akkaya MS (2007) Isolation and sequence analysis of wheat NBS–LRR type disease resistance gene analogs using degenerate PCR primers. Biochem Genet 45:469–486 Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo MC, Sehga S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie WR, Hall A, Mayer KFX, Edwards KJ, Bevan MW, Hall N (2012) Analysis of the breadwheat genome using whole-genome shotgun sequencing. Nature 491:705–710 Chen XM, Line RF, Leung H (1998) Genome scanning for resistance-gene analogs in rice, barley, and wheat by high-resolution electrophoresis. Theor Appl Genet 97:345–355 Collins N, Drake J, Ayliffe M, Sun Q, Ellis J, Hulbert S, Pryor T (1999) Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants. Plant Cell 11:1365–1376 Dayhoff M, Schwartz R, Orcutt B (1978) A model of evolutionary change in protein. Atlas Protein Seq Struct 5:345–352 de Wit PJGM (2007) How plants recognize pathogens and defend themselves. Cell Mol Life Sci 64:2726–2732 Deng Z, Huang S, Ling P, Chen C, Yu C, Weber CA, Moore GA, Gmitter FG Jr (2000) Cloning and characterization of NBS–LRR class resistance-gene candidate sequences in citrus. Theor Appl Genet 101:814–822 Deslandes L, Olivier J, Peeters N, Feng DX, Khounlotham M, Boucher C, Somssich I, Genin S, Marco Y (2003) Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci USA 100:8024–8029 DeYoung BJ, Innes RW (2006) Plant NBS–LRR proteins in pathogen sensing and host defense. Nat Immunol 7:1243–1249 Dilbirligi M, Gill KS (2003) Identification and analysis of expressed resistance gene sequences in wheat. Plant Mol Biol 53:771–787 Dilbirligi M, Erayman M, Sandhu D, Sidhu D, Gill KS (2004) Identification of wheat chromosomal regions containing expressed resistance genes. Genetics 166:461–481 Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaves tissue. Phytochem Bull 19:11–15 Du Preez FB (2005) Tracking nucleotide-binding-site-leucine-rich-repeat resistance gene analogues in the wheat genome complex. Dissertation, Faculty of Natural and Agricultural Sciences, Department of Genetics, University of Pretoria (South Africa) Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100:15253–15258 Flor HH (1971) Current status of the gene-for-gene concept. Ann Rev Phytopathol 9:275–298 Frick MM, Huel R, NykiForuk CL, Conner RL, Kusyk A, Laroche A (1998) Molecular characterization of a wheat stripe rust resistance gene in Moro wheat. In: Proceedings of the 9th international wheat genetics symposium, Saskatoon, Canada. University Extension Press, University of Saskatchewan, pp 181–182 Gennaro A, Koebner RM, Ceoloni C (2009) A candidate for Lr19, an exotic gene conditioning leaf rust resistance in wheat. Funct Integr Genomics 9:325–334 Gill BS, Appels R, Botha-Oberholster AM, Buell CR, Bennetzen JL, Chalhoub B, Chumley F, Dvořák J, Iwanaga M, Keller B, Li W, McCombie WR, Ogihara Y, Quetier F, Sasaki T (2004) A workshop report on wheat genome sequencing: International Genome Research on Wheat Consortium. Genetics 168:1087–1096 Glowacki S, Macioszek VK, Kononowicz AK (2011) R-proteins as fundamentals of plant innate immunity. Cell Mol Biol Lett 16:1–24 Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98 Hein I, Gilroy EM, Armstrong MR, Birch PR (2009) The zig-zag-zig in oomycete-plant interactions. Mol Plant Pathol 4:547–562 Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877 Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164:655–664 Huang L, Brooks S, Li W, Fellers J, Nelson JC, Gill B (2009) Evolution of new disease specificity at a simple resistance locus in a crop-weed complex: reconstitution of the Lr21 gene in wheat. Genetics 182:595–602 Jones JDG, Dangl J (2006) The plant immune system. Nature 444:323–329 Jones DA, Jones JDG (1997) The role of leucine-rich repeat proteins in plant defences. Adv Bot Res 24:90–167 Kharrat I, Bouktila D, Mezghani-Khemakhem M, Makni H, Makni M (2012) Biotype characterization and genetic diversity of the greenbug, Schizaphis graminum (Hemiptera: Aphididae), in north Tunisia. Rev Colomb Entomol 38:87–90 Kohler A, Rinaldi C, Duplessis S, Baucher M, Geelen D, Duchaussoy F, Meyers BC, Boerjan W, Martin F (2008) Genome-wide identification of NBS resistance genes in Populus trichocarpa. Plant Mol Biol 66:619–636 Lagudah ES, Moullet O, Appels R (1997) Map based cloning of a gene sequence encoding a nucleotide binding domain and a leucine-rich repeat region at the Cre3 nematode resistance locus of wheat. Genome 40:659–665 Leister D, Kurth J, Laurie DA, Yano M, Sasaki T, Devos K, Graner A, Schulze-Lefert P (1998) Rapid reorganization of resistance gene homologues in cereal genomes. Proc Nat Acad Sci 95:370–375 Liu XM, Reese JC, Wilde GE, Fritz AK, Gill BS, Chen M (2005) Hessian fly-resistance genes H9, H10, and H11 are mapped to the distal region of wheat chromosome 1AS. Theor Appl Genet 10:1473–1480 Loutre C, Wicker T, Travella S, Galli P, Scofield S, Fahima T, Feuillet C, Keller B (2009) Two different CC–NBS–LRR genes are required for Lr10-mediated leaf rust resistance in tetraploid and hexaploid wheat. Plant J 60:1043–1054 Lozano R, Ponce O, Ramirez M, Mostajo N, Orjeda G (2012) Genome-wide identification and mapping of NBS-encoding resistance genes in Solanum tuberosum group Phureja. PLoS One 7:e34775. doi:10.1371/journal.pone.0034775 Mago R, Nair S, Mohan M (1999) Resistance gene analogues from rice: cloning, sequencing and mapping. Theor Appl Genet 99:50–57 Makni H, Bouktila D, Mezghani M, Makni M (2011) Hessian fly, Mayetiola destructor (say), populations in the North of Tunisia: virulence, yield loss assessment and phonological data. Chil J Agric Res 71:401–405 Maleki L, Faris JD, Bowden RL, Gill BS, Fellers JP (2003) Physical and genetic mapping of wheat kinase analogs and NBS–LRR resistance gene analogs. Crop Sci 43:660–670 Pan QL, Wendel J, Fluhr R (2000) Divergent evolution of plant NBS–LRR resistance gene homologues in dicot and cereal genomes. J Mol Evol 50:203–213 Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP (2010) A coding independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465:1033–1038 Porter BW, Paidi M, Ming R, Alam M, Nishijima WT, Zhu YJ (2009) Genome-wide analysis of Carica papaya reveals a small NBS resistance gene family. Mol Genet Genomics 281:609–626 Rogers J (2014) The IWGSC survey sequencing initiative. International Plant and Animal Genome Conference XXII, San Diego, California (USA), 10–15 Jan 2014. (https://pag.confex.com/pag/xxii/webprogram/Session2168.html) Rossi M, Goggin FL, Milligan SB, Klaoshian I, Ullman DE, Williamson VM (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci USA 95:9750–9754 Salamov A, Solovyev V (2000) Ab initio gene finding in Drosophila genomic DNA. Genome Res 10:516–522 Sanseverino W, Ercolano MR (2012) In silico approach to predict candidate R proteins and to define their domain architecture. BMC Res Notes 5:678. doi:10.1186/1756-0500-5-678 Seah S, Sivasithamparam K, Karakousis K, Lagudah ES (1998) Cloning and characterization of a family of disease resistance gene analogs from wheat and barley. Theor Appl Genet 97:937–945 Shang J, Tao Y, Chen X, Zou Y, Lei C, Wang J, Li X, Zhao X, Zhang M, Lu Z, Xu J, Cheng Z, Wan J, Zhu L (2009) Identification of a new rice blast resistance gene, Pid3, by genome wide comparison of paired nucleotide-binding site leucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes. Genetics 182:1303–1311 Smith CM, Clement SL (2012) Molecular bases of plant resistance to arthropods. Ann Rev Entomol 57:309–328 Spielmeyer W, Robertson M, Collins N, Leister D, Schulze-Lefert D, Seah S, Moullet O, Lagudah ES (1998) A superfamily of disease resistance gene analogs is located on all homeologus chromosome groups of wheat (Triticum aestivum). Genome 41:782–788 Srichumpa P, Brunner S, Keller B, Yahiaoui N (2005) Allelic series of four powdery mildew resistance genes at the Pm3 locus in hexaploid bread wheat. Plant Physiol 139:2885–2895 Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. J Syst Biol 56:564–577 Tan S, Wu S (2012) Genome wide analysis of nucleotide-binding site disease resistance genes in Brachypodium distachyon. Comp Funct Genomics 2012:418208. doi:10.1155/2012/418208 Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680 Traut TW (1994) The functions and consensus motifs of nine types of peptide segments that form different types of nucleotide binding sites. Eur J Biochem 222:9–19 van der Hoorn RAL, Kamoun S (2008) From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20:2009–2017 Wan H, Yuan W, Bo K, Shen J, Pang X, Chen J (2013) Genome-wide analysis of NBS-encoding disease resistance in Cucumis sativus and phylogenetic study of NBS-encoding genes in Cucurbitaceae crops. BMC Genom 14:109 Wei F, Gobelman-Werner K, Morroll SM, Kurth J, Mao L, Wing R, Leister D, Schulze-Lefert P, Wise RP (1999) The Mla (Powdery Mildew) resistance cluster is associated with three NBS-LRR families and suppressed recombination within a 240-kb DNA interval on chromosome 5S(1HS) of barley. Genetics 153:1929–1948 Whitham S, Dineshkumar SP, Choi D, Hehl R, Corr C, Baker B (1994) The product of the tobacco mosaic-virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78:1101–1115 Wilkinson PA, Winfield MO, Barker GLA, Allen AM, Burridge A, Coghill JA, Burridge A, Edwards KJ (2012) CerealsDB 2.0: an integrated resource for plant breeders and scientists. BMC Bioinform 13:219 Zhai XG, Zhao T, Liu YH, Long H, Deng GB, Pan ZF, Yu MQ (2008) Characterization and expression profiling of a novel cereal cyst nematode resistance gene analog in wheat. Mol Biol (NY) 42:960–965 Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214