Characterization of nanoparticles combining polyamine detection with photodynamic therapy
Tóm tắt
Từ khóa
Tài liệu tham khảo
Pegg, A. E. Toxicity of polyamines and their metabolic products. Chem. Res. Toxicol. 26, 1782–1800 (2013).
Wang, Y. & Casero, R. A. Mammalian polyamine catabolism: a therapeutic target, a pathological problem, or both? J. Biochem. 139, 17–25 (2006).
Casero Robert, A. & Pegg Anthony, E. Polyamine catabolism and disease. Biochem. J. 421, 323–338 (2009).
Soda K. The mechanisms by which polyamines accelerate tumor spread. J. Exp. Clin. Cancer Res. 30, 95–104 (2011).
Tomasi, M. L. et al. Polyamine and methionine adenosyltransferase 2A crosstalk in human colon and liver cancer. Exp. Cell Res. 319, 1902–1911 (2013).
Arruabarrena-Aristorena A., Zabala-Letona A. & Carracedo A. Oil for the cancer engine: the cross-talk between oncogenic signaling and polyamine metabolism. Sci. Adv. 4, eaar2606 (2018).
Wallace, H. M. & Caslake, R. Polyamines and colon cancer. Eur. J. Gastroenterol. Hepatol. 13, 1033–1039 (2001).
Gomes, A. P., Schild, T. & Blenis, J. Adding polyamine metabolism to the mTORC1 toolkit in cell growth and cancer. Dev. Cell 42, 112–114 (2017).
Wallace, H. M. Targeting polyamine metabolism: a viable therapeutic/preventative solution for cancer? Expert Opin. Pharmacother. 8, 2109–2116 (2007).
Hyvonen, M. T. et al. Role of hypusinated eukaryotic translation initiation factor 5A in polyamine depletion-induced cytostasis. J. Biol. Chem. 282, 34700–34706 (2007).
Petereit, D. G. et al. Combining polyamine depletion with radiation therapy for rapidly dividing head and neck tumors: strategies for improved locoregional control. Int J. Radiat. Oncol. Biol. Phys. 28, 891–898 (1994).
Marton, L. J. & Pegg, A. E. Polyamines as targets for therapeutic intervention. Annu. Rev. Pharmacol. Toxicol. 35, 55–91 (1995).
Gerner, E. W., Bruckheimer, E. & Cohen, A. Cancer pharmacoprevention: targeting polyamine metabolism to manage risk factors for colon cancer. J. Biol. Chem. 293, 18770–18778 (2018).
Devens, B. H., Weeks, R. S., Burns, M. R., Carlson, C. L. & Brawer, M. K. Polyamine depletion therapy in prostate cancer. Prostate Cancer Prostatic Dis. 3, 275–279 (2001).
Wallace, H. M., Fraser, A. V. & Hughes, A. A perspective of polyamine metabolism. Biochem. J. 376, 1–14 (2003).
Linsalata, M., Orlando, A. & Russo, F. Pharmacological and dietary agents for colorectal cancer chemoprevention: effects on polyamine metabolism (Review). Int. J. Oncol. 45, 1802–1812 (2014).
Dai, F. et al. Design, synthesis, and biological evaluation of mitochondria-targeted flavone–naphthalimide–polyamine conjugates with antimetastatic activity. J. Med. Chem. 60, 2071–2083 (2017).
Li, J. et al. Discovery of the polyamine conjugate with benzo[cd]indol-2(1H)-one as a lysosome-targeted antimetastatic agent. J. Med. Chem. 61, 6814–6829 (2018).
Liu, H. et al. Polyamine-based Pt(IV) prodrugs as substrates for polyamine transporters preferentially accumulate in cancer metastases as DNA and polyamine metabolism dual-targeted antimetastatic agents. J. Med. Chem. 62, 11324–11334 (2019).
Chen J. et al. Supramolecular trap for catching polyamines in cells as an anti-tumor strategy. Nat. Commun. 10, 3546 (2019).
Ding, Y.-F. et al. Host–guest interactions initiated supramolecular chitosan nanogels for selective intracellular drug delivery. ACS Appl. Mater. Interfaces 11, 28665–28670 (2019).
Cheng, Q. et al. Dual stimuli-responsive bispillar[5]arene-based nanoparticles for precisely selective drug delivery in cancer cells. Chem. Commun. 55, 2340–2343 (2019).
Chen, Y. et al. Supramolecular chemotherapy: cooperative enhancement of antitumor activity by combining controlled release of oxaliplatin and consuming of spermine by cucurbit[7]uril. ACS Appl. Mater. Interfaces 9, 8602–8608 (2017).
Hao, Q. et al. Supramolecular chemotherapy: carboxylated pillar[6]arene for decreasing cytotoxicity of oxaliplatin to normal cells and improving its anticancer bioactivity against colorectal cancer. ACS Appl. Mater. Interfaces 10, 5365–5372 (2018).
Agostinelli, E., Vianello, F., Magliulo, G., Thomas, T. & Thomas, T. J. Nanoparticle strategies for cancer therapeutics: Nucleic acids, polyamines, bovine serum amine oxidase and iron oxide nanoparticles (Review). Int. J. Oncol. 46, 5–16 (2015).
Seiler, N. Thirty years of polyamine-related approaches to cancer therapy. Retrospect and prospect. Part 2. Structural analogues and derivatives. Curr. Drug Targets 4, 565–585 (2003).
Skruber, K., Chaplin, K. J. & Phanstiel, O. Synthesis and bioevaluation of macrocycle–polyamine conjugates as cell migration inhibitors. J. Med. Chem. 60, 8606–8619 (2017).
Li, L., Wang, L., Tang, H. & Cao, D. A facile synthesis of novel near-infrared pyrrolopyrrole aza-BODIPY luminogens with aggregation-enhanced emission characteristics. Chem. Commun. 53, 8352–8355 (2017).
Li, L. et al. A highly efficient, colorimetric and fluorescent probe for recognition of aliphatic primary amines based on a unique cascade chromophore reaction. Chem. Commun. 55, 9789–9792 (2019).
Li, L. et al. Pyrrolopyrrole aza-BODIPY dyes for ultrasensitive and highly selective biogenic diamine detection. Sens. Actuators B Chem. 312, 127953 (2020).
Ford, J. M., Hait, W. N., Matlin, S. A. & Benz, C. C. Modulation of resistance to alkylating agents in cancer cell by gossypol enantiomers. Cancer Lett. 56, 85–94 (1991).
Rui, L.-L. et al. Functional organic nanoparticles for photodynamic therapy. Chin. Chem. Lett. 27, 1412–1420 (2016).
Yi, G. et al. Recent advances in nanoparticle carriers for photodynamic therapy. Quant. Imaging Med. Surg. 8, 433–443 (2018).
Gao, P., Pan, W., Li, N. & Tang, B. Boosting cancer therapy with organelle-targeted nanomaterials. ACS Appl Mater. Interfaces 11, 26529–26558 (2019).