Characterization of <i>Miscanthus</i> cell wall polymers

GCB Bioenergy - Tập 11 Số 1 - Trang 191-205 - 2019
Judith Schäfer1, Melinda Sattler1, Yasir Iqbal2, Iris Lewandowski2, Mirko Bunzel1
1Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
2Biobased Products and Energy Crops (340b), Institute of Crop Science, University of Hohenheim, Stuttgart, Germany

Tóm tắt

AbstractEfficient utilization of lignocellulosic Miscanthus biomass for the production of biochemicals, such as ethanol, is challenging due to its recalcitrance, which is influenced by the individual plant cell wall polymers and their interactions. Lignocellulosic biomass composition differs depending on several factors, such as plant age, harvest date, organ type, and genotype. Here, four selected Miscanthus genotypes (Miscanthus sinensis, Miscanthus sacchariflorus, Miscanthus × giganteus, Miscanthus sinensis × Miscanthus sacchariflorus hybrid) were grown and harvested, separated into stems and leaves, and characterized for their non‐starch polysaccharide composition and structures, lignin contents and structures, and hydroxycinnamate profiles (monomers and ferulic acid dehydrodimers). Polysaccharides of all genotypes are mainly composed of cellulose and low‐substituted arabinoxylans. Ratios of hemicelluloses to cellulose were comparable, with the exception of Miscanthus sinensis that showed a higher hemicellulose/cellulose ratio. Lignin contents of Miscanthus stems were higher than those of Miscanthus leaves. Considering the same organs, the four genotypes did not differ in their Klason lignin contents, but Miscanthus × giganteus showed the highest acetylbromide soluble lignin content. Lignin polymers isolated from stems varied in their S/G ratios and linkage type distributions across genotypes. p‐Coumaric acid was the most abundant ester‐bound hydroxycinnamte monomer in all samples. Ferulic acid dehydrodimers were analyzed as cell wall cross‐links, with 8‐5‐coupled diferulic acid being the main dimer, followed by 8‐O‐4‐, and 5‐5‐diferulic acid. Contents of p‐coumaric acid, ferulic acid, and ferulic acid dimers varied depending on genotype and organ type. The largest amount of cell wall cross‐links was analyzed for Miscanthus sinensis.

Từ khóa


Tài liệu tham khảo

Adams G. A., 1965, Methods in Carbohydrate, 185

10.1016/j.phytochem.2006.04.018

10.1007/s12155-014-9524-7

10.1007/s12155-012-9275-2

10.1016/j.jbiotec.2006.02.021

Bunzel M., 2010, Chemistry and occurrence of hydroxycinnamate oligomers, PhytochemistryReviews, 9, 47

10.1021/jf061525z

10.1021/jf2031378

10.1021/jf0520037

10.1111/j.1365-313X.1993.tb00007.x

10.1385/ABAB:84-86:1-9:5

10.1038/nbt1316

10.1021/ac303529v

10.1111/gcbb.12357

10.1021/jf960568k

10.1111/nph.14306

10.1093/jxb/erv183

10.1021/jf101514j

10.1016/j.phytochem.2012.09.001

10.1016/j.polymdegradstab.2009.07.007

10.1016/j.carres.2004.05.023

10.1021/jf9808776

10.1016/j.biortech.2010.10.017

10.1002/jsfa.2740510202

10.1016/j.fuproc.2014.01.003

10.3389/fpls.2017.00727

10.1021/jf00058a037

Johnson D. B., 1961, The spectrophotometric determination of lignin in small wood samples, Tappi, 44, 793

Jørgensen H., 2007, Enzymatic conversion of lignocellulose into fermentable sugars: Challenges and opportunities. Biofuels, Bioprod. Biorefin., 1, 119, 10.1002/bbb.4

10.3389/fpls.2017.00563

10.1021/acs.biomac.7b01223

10.1039/B916070A

10.1016/j.biortech.2010.05.087

10.1016/S0961-9534(00)00032-5

10.3389/fpls.2016.01620

10.3389/fchem.2016.00045

10.1016/j.biortech.2012.12.107

10.1007/s12155-015-9583-4

10.1039/b809464k

10.1111/j.1757-1707.2011.01091.x

10.1038/nprot.2012.064

10.1016/j.carres.2010.07.034

10.1016/j.rser.2017.05.026

10.1016/S0960-8524(99)00161-3

10.1038/nprot.2012.081

Prosky L., 1985, Determination of total dietary fiber in foods and food products: Collaborative study, J. Assoc. off. Anal. Chem., 68, 677

10.1007/s12155-015-9655-5

10.1002/bit.260261010

10.1007/s11101-009-9141-9

Ralph S. A. Ralph J. &Landucci L. L.(2009).NMR Database of Lignin and Cell Wall Model Compounds. Retrieved fromhttps://www.glbrc.org/databases_and_software/nmrdatabase/. Accessed: 29 July 2015.

10.1016/0008-6215(95)00237-N

10.1021/ja00100a006

10.1201/EBK1574444865-c5

10.1023/B:PHYT.0000047809.65444.a4

10.1039/p19940003485

10.1016/j.rser.2017.05.225

10.1021/i560137a008

10.1016/0008-6215(95)00053-V

10.1021/acs.jafc.5b05575

10.1016/j.pbi.2010.03.001

10.1016/S0960-8524(01)00212-7

Sweet D. P., 1975, Quantitative analysis by various GLC response factor theories for partially methylated and partially ethylated alditol acetates Carbohydr, Philosophy and Phenomenological Research, 40, 217

10.1021/jf00068a045

10.1111/gcbb.12355

10.1016/S0008-6215(97)10064-7

10.1021/jf900483t

10.1016/j.pbi.2008.03.002

10.1016/j.phytochem.2015.04.009

10.1186/1754-6834-5-58

10.1007/s12155-015-9642-x

10.1039/b108285j

10.1111/gcbb.12115

10.1002/bbb.1331