Characterization of a cowpea (Vigna unguiculata) rhizobiophage and its effect on cowpea nodulation and growth

Biology and Fertility of Soils - Tập 18 - Trang 297-301 - 1994
M. H. Ahmad1, V. Morgan1
1The Biotechnology Centre, University of the West Indies, Mona Kingston 7, Jamaica

Tóm tắt

A cowpea rhizobiophage (JRW 3 phage) from Jamaican soil was isolated and characterized. The phage has a polyhedral head and a non-contractile tail; maximum adsorption of the phage to the host occurred after 5 min. A one-step growth experiment revealed that the latent period, rise period and burst size of JRW3 phage were 12 h, 16 h, and 28 plaque-forming units/cell, respectively. The JRW 3 phage was highly sensitive to heat, but survived well between pH 5 and 8. The phage was stable in EDTA, though completely inactivated in sodium citrate. Host range analysis showed that 7 of the 40Rhizobium andBradyrhizobium strains tested were sensitive to phage infection. The phage significantly reduced nodule numbers and shoot dry weight of cowpea plants when inoculated with rhizobia in combination with the phage.

Tài liệu tham khảo

Adams MH (1959) The bacteriophages. New York Interscience, New York Ahmad MH, McLaughlin W (1985) Ecology and genetics of tropicalRhizobium species. Biotech Adv 3: 155–170 Ahmad MH, Singh I (1987) Properties of streptomycin-dependent non-nodulating mutant of cowpea rhizobia. FEMS Microbiol Lett 41: 331–336 Ahmad MH, Smith E (1985) Utilization of carbon and nitrogen sources and acid/alkali production by cowpea rhizobia. Plant Soil 81: 305–307 Ahmad MH, Eaglesham ARJ, Hassouna S, Seaman B, Ayanaba A, Mulagoy K, Pulver EL (1981a) Examining the potential for inoculant use with cowpeas in West African soils. Trop Agric 58: 325–335 Ahmad MH, Eaglesham ARJ, Hassouna S (1981b) Examining serological diversity of cowpea rhizobia by the ELISA technique. Arch Microbiol 130: 281–287 Ahmad MH, Uddin R, McLaughlin W (1984) Characterization of rhizobia from wild legumes. FEMS Microbiol Lett 24: 179–205 Allen EK, Allen ON (1950) Biochemical and symbiotic properties of rhizobia. Bacteriol Rev 15: 273–330 Barnet YM (1972) Bacteriophages ofRhizobium trifolii. 1. Morphology and host range. J Gen Virol 15: 1–15 Barnet YM (1980) The effect of rhizobiophages on populations ofRhizobium trifolii in the root zone of clover plants. Can J Microbiol 26: 567–576 Bishop PE, Supiano MA, Brill WJ (1977) Technique for isolating phage fromAzotobacter vinelandii. Appl Environ Microbiol 33: 1007–1008 Daniels LL, Wais AC (1984) Restriction and modification of halophage S45 inHalobacterium. Curr Microbiol 133–136 DeLaugjdie PD, Bogusz D (1984) Isolation and characterization of two bacteriophages of a stem-nodulatingRhizobium strain fromSesbania rostratia. Can J Microbiol 30: 521–525 Dhar B, Ramkrishna K (1987) Morphology and general characteristics of phages of chickpea rhizobia. Arch Microbiol 147: 121–125 Dhar B, Singh BD, Singh RB, Singh RM, Singh VM, Srivastava JS (1978) Isolation and characterization of virus (RL 1) infections ofRhizobium leguminosarum. Arch Microbiol 119: 263–267 Ellis EL, Delbruck M (1939) The growth of bacteriophage. J Gen Physiol 22: 365–384 Evans J, Barnet YM, Vincent JM (1979a) Effect of a bacteriophage on the colonization and nodulation of clover roots by a strain ofRhizobium trifolii. Can J Microbiol 25: 968–973 Evans J, Barnet YM, Vincent JM (1979b) Effects of a bacteriophage colonization and nodulation of clover roots by paired strains ofRhizobium trifolii. Can J Microbiol 25: 974–978 Hashem FM, Angle JS (1988) Rhizobiophage effects onBradyrhizobium japonicum nodulation and soybean growth. Soil Biol Biochem 20: 69–73 Hashem FM, Angle JS, Ristianopa (1986) Isolation and characterization of rhizobiophages specific forBradyrhizobium japonicum USDA 117. Can J Microbiol 32: 326–329 Kellen RA, Warren RAJ (1971) Isolation and properties of a bacteriophage lytic for wide range of Pseudomonads. Can J Microbiol 4: 298–310 Kleczkowska J (1950) A study of phage resistant mutants ofRhizobium trifolii. J Gen Microbiol 4: 298–310 Martin MO, Long SR (1984) Generalized transduction inRhizobium meliloti. J Bacteriol 159: 125–129 McLaughlin W, Singh I, Ahmad MH (1987) Characterization of Tn5 induced symbiotically defective mutants of cowpea rhizobia. FEMS Microbiol Lett 41: 331–336 Morgan V (1991) Characterization of Rhizobiophage isolated from Jamaican soils. M Phil Thesis, University of the West Indies, Jamaica Singh RB, Dhar B, Singh BD (1980) Morphology and general characterization of viruses active against cowpeaRhizobium CB756 and 32HI. Arch Virol 64: 17–24 Staniewski R (1987) Morphology and general characteristics of phages active againstRhizobium. J Basic Microbiol 27: 155–165 Staniewski R, Kowalski M, Gogaoz E, Sokolowska F (1962) Susceptibility ofRhizobium strains to phages. Acta Microbiol Pol 11: 245–254 Vidor C, Miller RH (1980) Relative saprophytic competence ofRhizobium japonicum strains in soils as determined by the quantitative florescent antibody technique. Soil Biol Biochem 12: 372–380 Vincent JM (1970) A manual for the practical study of root nodule bacteria Blackwell. I.B.P. Handbook No. 15, Oxford Edinburgh Woese C (1960) Thermal inactivation of animal viruses. Ann NY Acad Sci 83: 741–775 Yamamoto ND, Fraser, Mahler H (1968) Chelating agent shock of bacteriophage T5. Virology 2: 944–950 Zurkowski W, Lorkiewiez (1978) Effective method for the isolation of non-nodulating mutants ofRhizobium trifolii. Gen Res 32: 311–314