Characterization of Bacterial Cellulose Produced using Media Containing Waste Apple Juice

Springer Science and Business Media LLC - Tập 54 - Trang 649-657 - 2018
S. Bandyopadhyay1, N. Saha1, P. Saha1
1Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Zlin, Czech Republic

Tóm tắt

The present study involves bacterial cellulose (BC) production using freshly prepared apple juice medium (AJM) and the bacterial strain Gluconobacter xylinum CCM 3611T. The AJM was modified with ammonium sulfate, dipotassium phosphate, sucrose, acetic acid, with and without ethanol. BC sheets (in the dry state) were analyzed on the basis of morphological, rheological and structural properties, thermal stability, water holding capacity (WHC) and water absorption capacity (WAC). Comparative X-ray diffractograms of BC using cobalt radiation is observed for the first time. The WAC analysis revealed that lyophilized BC samples had the higher WAC than the oven air-dried samples. There is an evidential structural difference observed in BC prepared from different AJM. Moreover, the AJM modified with only ethanol, exhibited quite a significant yield of BC. BC produced from the medium without ethanol had the highest thermal stability, viscoelasticity, and WHC.

Tài liệu tham khảo

Römling, U., Res. Microbiol., 2002, vol. 153, no. 4, pp. 205–212.

Lin, S.-P., Calvar, I.L., Catchmark, J.M., Liu, J.-R., Demirci, A., and Cheng, K.-C., Cellulose, 2013, vol. 20, no. 5, pp. 2191–2219.

Bielecki, S., Krystynowicz, A., Turkiewicz, M., and Kalinowska, H., Biopolymers Online, New York: John Wiley and Sons, Hoboken, 2005.

Hestrin, S. and Schramm, M., Biochem. J., 1954, vol. 58, no. 2, pp. 345–352.

Kurosumi, A., Sasaki, C., Yamashita, Y., and Nakamura, Y., Carbohydr. Polym., 2009, vol. 76, no. 2, pp. 333–335.

Hungund, B.S. and Gupta, S.G., World J. Microbiol. Biotechnol., 2010, vol. 26, no. 10, pp. 1823–1828.

Jang, W.D., Hwang, J.H., Kim, H.U., Ryu, J.Y., and Lee, S.Y., Microb. Biotechnol., 2017, vol. 10, no. 5, pp. 1181–1185.

Velásquez-Riaño, M. and Bojacá, V., Cellulose, 2017, vol. 24, no. 7, pp. 2677–2698.

Food and Agriculture Organization of the United Nations. FAOSTAT Database, Rome, Italy: FAO, 2014. Retrieved November 8, 2017. http://www.fao.org/ faostat/en/#data/QC.

Neera, Ramana, K.V., and Batra, H.V., Appl. Biochem. Biotechnol., 2015, vol. 176, no. 4, pp. 1162–1173.

Food and Agriculture Organization of the United Nations. FAOSTAT Database, Rome, Italy: FAO, 2017. Retrieved November 8, 2017. http://www.fao.org/save-food/ resources/keyfindings/en/.

Urbina, L., Hernández, M., Eceiza, A., Gabilondo, N., Corcuera, M.A., Prieto, M.A., and Retegi, A., Cellulose, 2017, vol. 24, no. 5, pp. 2071–2082.

Semjonovs, P., Ruklisha, M., Paegle, L., Saka, M., Treimane, R., Skute, M., et al., Appl. Microbiol. Biotechnol., 2017, vol. 101, no. 3, pp. 1003–1012.

Gromovykh, T.I., Sadykova, V.S., Lutcenko, S.V., Dmitrenok, A.S., Feldman, N.B., Danilchuk, T.N., and Kashirin, V.V., Appl. Biochem. Microbiol., 2017, vol. 53, no. 1, pp. 60–67.

Chinnici, F., Spinabelli, U., Riponi, C., and Amati, A., J. Food Compost. Anal., 2005, vol. 18, no. 2-3, pp. 121–130.

Schrecker, S.T. and Gostomski, P.A., Biotechnol. Lett., 2005, vol. 27, no. 19, pp. 1435–1438.

Shezad, O., Khan, S., Khan, T., and Park, J.K., Carbohydr. Polym., 2010, vol 82, no. 1, pp. 173–180.

Mohite, B.V. and Patil, S.V., Carbohydr. Polym., 2014, vol. 106, pp. 132–141.

Gea, S., Reynolds, C.T., Roohpour, N., Wirjosentono, B., Soykeabkaew, N., Bilotti, E., and Peijs, T., Bioresour. Technol., 2011, vol. 102, no. 19, pp. 9105–9110.

Moharram, M.A., and Mahmoud, O.M., J. Appl. Polym. Sci., 2008, vol. 107, no. 1, pp. 30–36.

Movasaghi, Z., Rehman, S., and Rehman, D.I. ur., Appl. Spectrosc Rev., 2008, vol. 43, no. 2, pp. 134–179.

Advantages of a Cu vs. Co X-ray Diffraction Source. Triclinic Labs News and Announcements Database, Lafayette, Indiana: Triclinic Labs Inc., USA, 2012. Retrieved November 8, 2017. http://tricliniclabs. com/downloadable-documents/Advantages%20of% 20a%20Cu%20vs.%20Co%20X-ray%20Diffraction% 20Source%20-%20Stahly%20-%20Triclinic%20Labs% 20-Q32012.pdf.

Kourkoumelis N., Powder diffraction, ICDD Annual Spring Meetings, O’Neill, Ed., London, 2013, vol. 28, pp. 137–148.

Klechkovskaya, V.V., Baklagina, Y.G., Stepina, N.D., Khripunov, A.K., Buffat, P.A., Suvorova, E.I., et al., Crystallogr. Rep., 2003, vol. 48, no. 5, pp. 755–762.

Ford, E.N.J., Mendon, S.K., Thames, S.F., and Rawlins, J.W., J. Eng. Fibers Fabr., 2010, vol. 5, no. 1, pp. 10–20.

Feng, X., Ullah, N., Wang, X., Sun, X., Li, C., Bai, Y., et al., J. Food Sci., 2015, vol. 80, no. 10, pp. E2217–E2227.

Li, H., Zhang, W., Xu, W., and Zhang, X., Macromolecules, 2000, vol. 33, no. 2, pp. 465–469.

Kim, J.Y., and Kim, S.H., Nanocomposites—New Trends and Developments, Ebrahim, F., Ed., InTech, 2012.

Tatsumi, D. and Matsumoto, T., J. Cent. South Univ. Technol., 2007, vol. 14, suppl. 1, pp. 250–253.

Roy, N., Saha, N., Kitano, T., and Saha, P., J. Appl. Polym. Sci., 2010, vol. 117, no. 3, pp. 1703–1710.

Barud, H.S., Ribeiro, C.A., Crespi, M.S., Martines, M.A.U., Dexpert-Ghys, J., Marques, R.F.C., et al., J. Therm. Anal. Calorim., 2007, vol. 87, no. 3, pp. 815–818.

Ougiya, H., Watanabe, K., Matsumura, T., and Yoshinaga, F., Biosci. Biotechnol. Biochem., 1998, vol. 62, no. 9, pp. 1714–1719.

Mirhosseini, H. and Amid, B.T., Chem. Cent. J., 2013, vol. 7, no. 1, pp. 1–14.

Chau, C.F. and Huang, Y.L., Food Chem., 2004, vol. 85, no. 2, pp. 189–194.