Characterization and Early Age Physical Properties of Ambient Cured Geopolymer Mortar Based on Class C Fly Ash

Ashley Russell Kotwal1, Yoo Jae Kim1, Jiong Hu2, Vedaraman Sriraman2
1Materials Science, Engineering and Commercialization Program, Department of Engineering Technology, Texas State University, San Marcos, TX, 78666, USA
2Concrete Industry Management Program, Department of Engineering Technology, Texas State University, San Marcos, TX, 78666, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

ASTM C1064 (2011). Standard test method for temperature of freshly mixed hydraulic-cement concrete. West Conshohocken, PA: ASTM International.

ASTM C1437 (2007). Standard test method for flow of hydraulic cement mortar. West Conshohocken, PA: ASTM International.

ASTM C136 (2006). Standard test method for sieve analysis of fine and coarse aggregates. West Conshohocken, PA: ASTM International.

ASTM C33 (2011). Standard specification for concrete aggregates. West Conshohocken, PA: ASTM International.

ASTM C109 (2011). Standard test method for compressive strength of hydraulic cement mortars. West Conshohocken, PA: ASTM International.

ASTM C128 (2012). Standard test method for density, relative density (specific gravity) and absorption of fine aggregate. West Conshohocken, PA: ASTM International.

ASTM C618 (2012). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. West Conshohocken, PA: ASTM International.

Davidovits, J. (1994). Global warming impact on the cement and aggregates industries. World Resource Review,6(2), 263–278.

Davidovits, J. (2011). Geopolymer chemistry & applications (3rd ed.). Saint-Quentin: Institut Geopolymere.

Guo, X., Shi, H., & Dick, W. A. (2010). Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cement & Concrete Composites,32, 142–147.

Hanle, L. J., Jayaraman, K. R., & Smith, J. S. (2011). CO2 emissions profile of the U.S. cement industry. Washington, DC: United States Environmental Protection Agency.

Jaarsveld, J., Deventer, J., & Lukey, G. (2002). The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers. Chemical Engineering Journal,89, 63–73.

Jiang, W., & Roy, D. M. (1992). Hydrothermal processing of new fly ash cement. American Ceramic Society Bulletin,71(4), 642–647.

Leelathawornsuk, Y. (2009). The role of sodium hydroxide concentration in fly ash-based geopolymer. Bangkok, Thailand: Kasetsart University.

Mindess, S., & Young, J. F. (1981). Concrete. Englewood Cliffs, NJ: Prentice Hall.

Mustafa, A. M., Kamarudin, H., Omar, A. K., Norazian, M. N., Ruzaidi, C. M., & Rafiza, A. R. (2011). The effect of alkaline activator ratio on the compressive strength of fly ash-based geopolymers. Australian Journal of Basic and Applied Sciences,5(9), 1916–1922.

PCA (2012). Green in practice 102—concrete, cement and CO2. Retrieved from Portland Cement Association: www.concretethinker.com/papers.aspx?docid=312 .

Pearce, F. (1997). The concrete jungle overheats. New Scientist, 155(2091), 14.

Popovics, S. (1982). Fundamentals of portland cement concrete: A quantitative approach. New York, NY: Wiley.

Seal, S., Hench, L. L., Moorthy, S. B., Reid, D., & Karakoti, A. (2011). United States of America Patent No. US 2011/0112272 A1.

Silverstrim, T., Martin, J., & Rostami, H. (1999). Geopolymeric fly ash cement. In J. Davidovits, R. Davidovits & C. James (Eds.), Geopolymer international conference (pp. 107–108). Saint-Quentin: Institute Geopolymere.

Somna, K., Jaturapitakkul, C., Kajitvichyanukul, P., & Chindaprasirt, P. (2011). NaOH-activated ground fly ash geopolymer cured at ambient temperature. Fuel,90, 2118–2124.

USGBC. (2005). LEED for new construction & major renovations. Retrieved from United States Green Building Council: www.usgbc.org/ShowFile.aspx?DocumentID=1095 .

Vijai, K., Kumutha, R., & Vishnuram, B. G. (2010). Effect of types of curing on strength of geopolymer concrete. International Journal of the Physical Sciences,5(9), 1419–1423.

Worrell, E., & Galitsky, C. (2008). Energy efficiency improvement and cost saving opportunities for cement making. Washington, DC: Environmental Protection Agency.