Characterization and Early Age Physical Properties of Ambient Cured Geopolymer Mortar Based on Class C Fly Ash
Tóm tắt
Từ khóa
Tài liệu tham khảo
ASTM C1064 (2011). Standard test method for temperature of freshly mixed hydraulic-cement concrete. West Conshohocken, PA: ASTM International.
ASTM C1437 (2007). Standard test method for flow of hydraulic cement mortar. West Conshohocken, PA: ASTM International.
ASTM C136 (2006). Standard test method for sieve analysis of fine and coarse aggregates. West Conshohocken, PA: ASTM International.
ASTM C33 (2011). Standard specification for concrete aggregates. West Conshohocken, PA: ASTM International.
ASTM C109 (2011). Standard test method for compressive strength of hydraulic cement mortars. West Conshohocken, PA: ASTM International.
ASTM C128 (2012). Standard test method for density, relative density (specific gravity) and absorption of fine aggregate. West Conshohocken, PA: ASTM International.
ASTM C618 (2012). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. West Conshohocken, PA: ASTM International.
Davidovits, J. (1994). Global warming impact on the cement and aggregates industries. World Resource Review,6(2), 263–278.
Davidovits, J. (2011). Geopolymer chemistry & applications (3rd ed.). Saint-Quentin: Institut Geopolymere.
Guo, X., Shi, H., & Dick, W. A. (2010). Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cement & Concrete Composites,32, 142–147.
Hanle, L. J., Jayaraman, K. R., & Smith, J. S. (2011). CO2 emissions profile of the U.S. cement industry. Washington, DC: United States Environmental Protection Agency.
Jaarsveld, J., Deventer, J., & Lukey, G. (2002). The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers. Chemical Engineering Journal,89, 63–73.
Jiang, W., & Roy, D. M. (1992). Hydrothermal processing of new fly ash cement. American Ceramic Society Bulletin,71(4), 642–647.
Leelathawornsuk, Y. (2009). The role of sodium hydroxide concentration in fly ash-based geopolymer. Bangkok, Thailand: Kasetsart University.
Mindess, S., & Young, J. F. (1981). Concrete. Englewood Cliffs, NJ: Prentice Hall.
Mustafa, A. M., Kamarudin, H., Omar, A. K., Norazian, M. N., Ruzaidi, C. M., & Rafiza, A. R. (2011). The effect of alkaline activator ratio on the compressive strength of fly ash-based geopolymers. Australian Journal of Basic and Applied Sciences,5(9), 1916–1922.
PCA (2012). Green in practice 102—concrete, cement and CO2. Retrieved from Portland Cement Association: www.concretethinker.com/papers.aspx?docid=312 .
Pearce, F. (1997). The concrete jungle overheats. New Scientist, 155(2091), 14.
Popovics, S. (1982). Fundamentals of portland cement concrete: A quantitative approach. New York, NY: Wiley.
Seal, S., Hench, L. L., Moorthy, S. B., Reid, D., & Karakoti, A. (2011). United States of America Patent No. US 2011/0112272 A1.
Silverstrim, T., Martin, J., & Rostami, H. (1999). Geopolymeric fly ash cement. In J. Davidovits, R. Davidovits & C. James (Eds.), Geopolymer international conference (pp. 107–108). Saint-Quentin: Institute Geopolymere.
Somna, K., Jaturapitakkul, C., Kajitvichyanukul, P., & Chindaprasirt, P. (2011). NaOH-activated ground fly ash geopolymer cured at ambient temperature. Fuel,90, 2118–2124.
USGBC. (2005). LEED for new construction & major renovations. Retrieved from United States Green Building Council: www.usgbc.org/ShowFile.aspx?DocumentID=1095 .
Vijai, K., Kumutha, R., & Vishnuram, B. G. (2010). Effect of types of curing on strength of geopolymer concrete. International Journal of the Physical Sciences,5(9), 1419–1423.