Characteristics of the Decomposition of CO2 in a Dielectric Packed-Bed Plasma Reactor
Tóm tắt
The decomposition of CO2 in a dielectric packed-bed plasma reactor has been studied. It was found that the dielectric properties and morphology of packing dielectric pellets play important roles in the reaction due to their influence on the electron energy distribution in the plasma. The acid–base properties of the packing materials also affect the reaction through the chemisorption of CO2 on basic sites of the materials. Heterogeneous reactions on the solid surfaces of the dielectric materials also play a role in the reaction, which was also confirmed through the investigation of the influence of the discharge length on the reaction. The reverse reaction of CO2 decomposition, the oxidation of CO, was also investigated to further understand the role of dielectric materials in the plasma and their effect on plasma reactions. Both the decomposition of CO2 and the oxidation of CO in non-packed or dielectric packed reactors are first-ordered.
Tài liệu tham khảo
Ashcroft AT, Cheetham AK, Green MLH, Vernon PDF (1991) Nature 352:225–226
Fei JH, Hou ZY, Zheng XM, Yashima T (2004) Catal Lett 98:241–246
Hou ZY, Gao J, Guo JZ, Liang D, Lou H, Zheng XM (2007) J Catal 250:331–341
Li Y, Wang XX, Xie C, Song CS (2009) App Catal A: General 357:213–222
Solymosi F, Tolmacsov P, Kedves K (2003) J Catal 216:377–385
Van Durme J, Dewulf J, Sysmans W, Leys C, Van Langenhove H (2007) Appl Catal B: Environ 74:161–169
Li X, Shi C, Xu Y, Wang K, Zhu A (2007) Green Chem 9:647–653
Miessner H, Rudolph R, Francke K-P (1998) Chem Comm 34:2725–2726
Ghorbanzadeh AM, Lotfalipour R, Rezaei S (2009) Int J Hydrogen Energy 34:293–298
Li M, Xu G, Tian Y, Chen L, Fu H (2004) J Phys Chem A 108:1687–1693
Bo Z, Yan J, Li X, Chi Y, Cen K (2008) Int J Hydrogen Energy 33:5545–5553
Kraus M, Eliasson B, Kogelschataz U, Wokaun A (2001) Phys Chem Chem Phys 3:294–300
Yu Q, Kong M, Liu T, Fei J, Zheng X (2011) Catal Comm 12:1318–1322
Goujard V, Tatibouet J, Batiot-Dupeyrat C (2009) Appl Catal A: General 353:228–235
Chen HL, Lee HM, Chen SH, Chao Y, Chang MB (2008) Appl Catal B: Environ 85:1–9
Brock SL, Marquez M, Suib SL, Hayashi Y, Matsumoto H (1998) J Catal 180:225–233
Wang JY, Xia GG, Huang A, Suib SL, Hayashi Y, Matsumoto H (1999) J Catal 185:152–159
Brock SL, Shimojo T, Marquez M, Marun C, Suib SL, Matsumoto H, Hayashi Y (1999) J Catal 184:123–133
Li R, Yamaguchi Y, Yin S, Yang Q, Sato T (2004) Solid State Ionics 172:235–238
Li R, Tang Q, Yin S, Sato T (2006) Fuel Process Technol 87:617–622
Li R, Tang Q, Yin S, Sato T (2007) Appl Phys Lett 90:131502
Li R, Tang Q, Yin S, Sato T (2006) Plasma Chem Plasma Proc 26:235–238
Indarto A, Yang DR, Choi JW, Lee H, Song HK (2007) J Hazard Mater 146:309–315
Horvath G, Skalny JD, Mason NJ (2008) J Phys D Appl Phys 41:225207
Mori S, Yamamoto A, Suzuki M (2006) Plasma Sources Sci Technol 15:609–613
David RL (1999–2000) CRC Handbook of chemistry and physics. CRC Press, New York
Corvin KK, Corrigan SJB (1969) J Chem Phys 50:2570–2574
Locht R, Davister M (1995) Int J Mass Spectro Ion Proc 144:105–129
Cenian A, Chernukho A, Borodin V (1995) Contrib Plasma Phys 35:273–296
Chen HL, Lee HM, Chen SH, Chang MB (2008) Ind Eng Chem Res 47:2122–2130
Takaki K, Urashima K, Jen-Shih C (2004) IEEE Trans Plasma Sci 32:2175–2183
Ye Q, Zhang T, Lu F, Li J, He Z, Lin F (2008) J Phys D Appl Phys 41:252–257
Heintze M, Pietruszka B (2004) Catal Today 89:21–25
Yamamoto A, Mori S, Suzuki M (2007) Thin Solid Films 515:4296
Cartry G, Magne L, Cernogora G (2000) J Phys D Appl Phys 33:1303–1304
Falkenstein Z (1999) J Appl Phys 85:525–529