Characteristics of the Decomposition of CO2 in a Dielectric Packed-Bed Plasma Reactor

Plasma Chemistry and Plasma Processing - Tập 32 - Trang 153-163 - 2011
Qinqin Yu1, Meng Kong1, Tong Liu1, Jinhua Fei1, Xiaoming Zheng1
1Department of Chemistry, Institute of Catalysis, Zhejiang University, Hangzhou, China

Tóm tắt

The decomposition of CO2 in a dielectric packed-bed plasma reactor has been studied. It was found that the dielectric properties and morphology of packing dielectric pellets play important roles in the reaction due to their influence on the electron energy distribution in the plasma. The acid–base properties of the packing materials also affect the reaction through the chemisorption of CO2 on basic sites of the materials. Heterogeneous reactions on the solid surfaces of the dielectric materials also play a role in the reaction, which was also confirmed through the investigation of the influence of the discharge length on the reaction. The reverse reaction of CO2 decomposition, the oxidation of CO, was also investigated to further understand the role of dielectric materials in the plasma and their effect on plasma reactions. Both the decomposition of CO2 and the oxidation of CO in non-packed or dielectric packed reactors are first-ordered.

Tài liệu tham khảo

Ashcroft AT, Cheetham AK, Green MLH, Vernon PDF (1991) Nature 352:225–226 Fei JH, Hou ZY, Zheng XM, Yashima T (2004) Catal Lett 98:241–246 Hou ZY, Gao J, Guo JZ, Liang D, Lou H, Zheng XM (2007) J Catal 250:331–341 Li Y, Wang XX, Xie C, Song CS (2009) App Catal A: General 357:213–222 Solymosi F, Tolmacsov P, Kedves K (2003) J Catal 216:377–385 Van Durme J, Dewulf J, Sysmans W, Leys C, Van Langenhove H (2007) Appl Catal B: Environ 74:161–169 Li X, Shi C, Xu Y, Wang K, Zhu A (2007) Green Chem 9:647–653 Miessner H, Rudolph R, Francke K-P (1998) Chem Comm 34:2725–2726 Ghorbanzadeh AM, Lotfalipour R, Rezaei S (2009) Int J Hydrogen Energy 34:293–298 Li M, Xu G, Tian Y, Chen L, Fu H (2004) J Phys Chem A 108:1687–1693 Bo Z, Yan J, Li X, Chi Y, Cen K (2008) Int J Hydrogen Energy 33:5545–5553 Kraus M, Eliasson B, Kogelschataz U, Wokaun A (2001) Phys Chem Chem Phys 3:294–300 Yu Q, Kong M, Liu T, Fei J, Zheng X (2011) Catal Comm 12:1318–1322 Goujard V, Tatibouet J, Batiot-Dupeyrat C (2009) Appl Catal A: General 353:228–235 Chen HL, Lee HM, Chen SH, Chao Y, Chang MB (2008) Appl Catal B: Environ 85:1–9 Brock SL, Marquez M, Suib SL, Hayashi Y, Matsumoto H (1998) J Catal 180:225–233 Wang JY, Xia GG, Huang A, Suib SL, Hayashi Y, Matsumoto H (1999) J Catal 185:152–159 Brock SL, Shimojo T, Marquez M, Marun C, Suib SL, Matsumoto H, Hayashi Y (1999) J Catal 184:123–133 Li R, Yamaguchi Y, Yin S, Yang Q, Sato T (2004) Solid State Ionics 172:235–238 Li R, Tang Q, Yin S, Sato T (2006) Fuel Process Technol 87:617–622 Li R, Tang Q, Yin S, Sato T (2007) Appl Phys Lett 90:131502 Li R, Tang Q, Yin S, Sato T (2006) Plasma Chem Plasma Proc 26:235–238 Indarto A, Yang DR, Choi JW, Lee H, Song HK (2007) J Hazard Mater 146:309–315 Horvath G, Skalny JD, Mason NJ (2008) J Phys D Appl Phys 41:225207 Mori S, Yamamoto A, Suzuki M (2006) Plasma Sources Sci Technol 15:609–613 David RL (1999–2000) CRC Handbook of chemistry and physics. CRC Press, New York Corvin KK, Corrigan SJB (1969) J Chem Phys 50:2570–2574 Locht R, Davister M (1995) Int J Mass Spectro Ion Proc 144:105–129 Cenian A, Chernukho A, Borodin V (1995) Contrib Plasma Phys 35:273–296 Chen HL, Lee HM, Chen SH, Chang MB (2008) Ind Eng Chem Res 47:2122–2130 Takaki K, Urashima K, Jen-Shih C (2004) IEEE Trans Plasma Sci 32:2175–2183 Ye Q, Zhang T, Lu F, Li J, He Z, Lin F (2008) J Phys D Appl Phys 41:252–257 Heintze M, Pietruszka B (2004) Catal Today 89:21–25 Yamamoto A, Mori S, Suzuki M (2007) Thin Solid Films 515:4296 Cartry G, Magne L, Cernogora G (2000) J Phys D Appl Phys 33:1303–1304 Falkenstein Z (1999) J Appl Phys 85:525–529