Characterisation, immunolocalisation and antifungal activity of a lipid transfer protein from chili pepper (Capsicum annuum) seeds with novel α‐amylase inhibitory properties

Physiologia Plantarum - Tập 142 Số 3 - Trang 233-246 - 2011
Mariângela S. S. Diz1, André de Oliveira Carvalho1, Suzanna F. F. Ribeiro1, Maura Da Cunha2, Leila Maria Beltramini3, Rosana Rodrigues4, Viviane Veiga do Nascimento1, Olga Lima Tavares Machado5, Valdirene Moreira Gomes1
1Laboratório de Fisiologia e Bioquímica de Microorganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brasil
2Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brasil
3Departamento de Biofísica, Instituto de Física de São Carlos, Universidade de São Paulo, 60451-970, São Carlos, São Paulo, Brazil
4Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brasil
5Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brasil

Tóm tắt

Lipid transfer proteins (LTPs) were thus named because they facilitate the transfer of lipids between membranes in vitro. This study was triggered by the characterization of a 9‐kDa LTP from Capsicum annuum seeds that we call Ca‐LTP1. Ca‐LTP1 was repurified, and in the last chromatographic purification step, propanol was used as the solvent in place of acetonitrile to maintain the protein's biological activity. Bidimensional electrophoresis of the 9‐kDa band, which corresponds to the purified Ca‐LTP1, showed the presence of three isoforms with isoelectric points (pIs) of 6.0, 8.5 and 9.5. Circular dichroism (CD) analysis suggested a predominance of α‐helices, as expected for the structure of an LTP family member. LTPs immunorelated to Ca‐LTP1 from C. annuum were also detected by western blotting in exudates released from C. annuum seeds and also in other Capsicum species. The tissue and subcellular localization of Ca‐LTP1 indicated that it was mainly localized within dense vesicles. In addition, isolated Ca‐LTP1 exhibited antifungal activity against Colletotrichum lindemunthianum, and especially against Candida tropicalis, causing several morphological changes to the cells including the formation of pseudohyphae. Ca‐LTP1 also caused the yeast plasma membrane to be permeable to the dye SYTOX green, as verified by fluorescence microscopy. We also found that Ca‐LTP1 is able to inhibit mammalian α‐amylase activity in vitro.

Từ khóa


Tài liệu tham khảo

10.1016/S0168-9452(00)00232-6

10.1016/0076-6879(55)01021-5

10.1016/0014-5793(91)80261-Z

10.1111/j.1574-6968.1990.tb04174.x

10.1016/S0981-9428(00)01230-4

10.1111/j.1399-3054.2004.00413.x

10.1016/j.plaphy.2006.09.011

10.1016/j.peptides.2007.03.004

10.1104/pp.105.069724

10.1104/pp.109.2.445

10.2174/092986610790780305

10.1590/S1677-04202003000300007

10.1016/j.bbagen.2006.04.010

10.1046/j.1432-1327.2001.02007.x

10.1016/S0168-9452(98)00121-6

10.1007/s00425-001-0717-x

10.5483/BMBRep.2003.36.6.603

10.1016/j.jplph.2004.10.006

10.1016/0165-022X(80)90008-1

10.1006/jmbi.2001.4559

10.1104/pp.125.2.835

Hollenbach B, 1997, Cadmium leads to stimulated expression of the lipid transfer protein genes in barley: implications for the involvement of lipid transfer proteins in wax assembly., Planta, 203, 9, 10.1007/s00050159

10.1016/j.bbrc.2010.08.063

10.1016/j.plantsci.2004.05.019

10.1046/j.1365-3040.2003.01024.x

10.1007/s00425-004-1461-9

10.1146/annurev.arplant.47.1.627

10.1016/S1360-1385(97)82565-4

10.1074/jbc.274.27.18872

10.1021/bi061441j

10.1006/jmbi.1997.1550

10.1016/j.peptides.2007.06.028

10.1016/S0006-291X(02)00509-0

10.1074/jbc.M410795200

10.1046/j.1365-313X.1997.00605.x

10.1016/0014-5793(93)81198-9

10.1105/tpc.105.032094

O’Farrel PH, 1975, High resolution two‐dimensional electrophoresis of proteins., J Biol Chem, 250, 4007, 10.1016/S0021-9258(19)41496-8

10.1016/0014-5793(95)00666-W

10.2174/092986610790780350

10.1016/j.jplph.2008.11.005

10.1105/tpc.12.1.151

10.1023/A:1013383329361

10.1002/prot.22086

10.1046/j.1365-313X.1995.07010049.x

10.1006/abbi.1994.1263

10.1016/S0003-9861(03)00201-7

10.1034/j.1399-3054.2000.110203.x

10.1111/j.1472-765X.2004.01647.x

10.1016/j.toxicon.2007.05.005

10.12702/1984-7033.v04n04a18

10.1016/j.pep.2009.11.008

10.1074/jbc.M203113200

10.1016/0003-2697(87)90587-2

10.1016/0014-5793(93)80641-7

10.1016/S0969-2126(01)00149-6

10.1023/A:1006232700835

10.1128/AAC.00181-06

10.1105/tpc.3.9.907

Tchang F, 1988, Phospholipid transfer protein: full‐length cDNA and amino‐acid sequence in maize. Amino‐acid sequence homologies between plant phospholipid transfer proteins., J Biol Chem, 263, 16849, 10.1016/S0021-9258(18)37469-6

Terras FRG, 1992, Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds., J Biol Chem, 267, 15301, 10.1016/S0021-9258(19)49534-3

Terras FRG, 1995, Small cysteine‐rich antifungal proteins from radish: their role in host defense., Plant Cell, 7, 573

10.1074/jbc.271.25.15018

Thevissen K, 1999, Permeabilization of fungal membranes by plant defensins inhibits fungal growth., Appl Environ Microbiol, 65, 5451, 10.1128/AEM.65.12.5451-5458.1999

10.1073/pnas.76.9.4350

10.1093/oxfordjournals.jbchem.a123787

10.1074/jbc.M709867200

10.1023/A:1012463315579

10.1128/AAC.00478-06

Whitford D, 2005, The three‐dimensional structure of proteins. In: Proteins: Structure and Function.

10.1016/j.peptides.2006.07.019

10.1093/jxb/erg211