Đặc điểm và xác định vị trí kháng Globodera pallida được phát hiện từ loài khoai tây hoang Solanum spegazzinii
Tóm tắt
Từ khóa
#Globodera pallida #Solanum spegazzinii #kháng #khoai tây #cây trồng #di truyền #Tài liệu tham khảo
Aronesty E (2011) Command-line tools for processing biological sequencing data. https://github.com/ExpressionAnalysis/ea-utils. Accessed 20 Sep 2023
Birch PRJ, Bryan G, Fenton B, Gilroy EM, Hein I, Jones JT, Prashar A, Taylor MA, Torrance L, Toth IK (2012) Crops that feed the world 8: Potato: are the trends of increased global production sustainable? Food Secur 4:477–508. https://doi.org/10.1007/s12571-012-0220-1
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170
Butler KJ, Chen S, Smith JM, Wang X, Bent AF (2019) Soybean resistance locus Rhg1 confers resistance to multiple cyst nematodes in diverse plant species. Phytopathology 109:2107–2115. https://doi.org/10.1094/PHYTO-07-19-0225-R
Caromel B, Mugniéry D, Lefebvre V, Andrzejewski S, Ellissèche D, Kerlan MC, Rousselle P, Rousselle-Bourgeois F (2003) Mapping QTLs for resistance against Globodera pallida (Stone) Pa2/3 in a diploid potato progeny originating from Solanum spegazzinii. Theor Appl Genet 106:1517–1523. https://doi.org/10.1007/s00122-003-1211-6
Chen X, Lewandowska D, Armstrong MR, Baker K, Lim TY, Bayer M, Harrower B, McLean K, Jupe F, Witek K, Lees AK, Jones JD, Bryan GJ, Hein I (2018) Identification and rapid mapping of a gene conferring broad-spectrum late blight resistance in the diploid potato species Solanum verrucosum through DNA capture technologies. Theor Appl Genet 131:1287–1297. https://doi.org/10.1007/s00122-018-3078-6
CIP (2017) Potato facts and figures. In: International Potato Center. https://cipotato.org/potato/potato-facts-and-figures. Accessed 20 Sep 2023
Cook DE, Lee TG, Guo X, Melito S, Wang K, Bayless AM, Wang J, Hughes TJ, Willis DK, Clemente TE, Diers BW, Jiang J, Hudson ME, Bent AF (2012) Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science 338:1206–1209. https://doi.org/10.1126/science.1228746
Danecek P, Bonfield JK, Liddle J, John M, Ohan V, Pollard MO, Whitwham A, Thomas K, McCarthy Shane A, Davies RM, Li H (2021) Twelve years of SAMtools and BCFtools. Gigascience. https://doi.org/10.1093/gigascience/giab008
DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498. https://doi.org/10.1038/ng.806
Ellenby C (1952) Resistance to the potato root eelworm, Heterodera rostochiensis Wollenweber. Nature 170:1016. https://doi.org/10.1038/1701016a0
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379. https://doi.org/10.1371/journal.pone.0019379
EPPO (2006) Testing of potato varieties to assess resistance to Globodera rostochiensis and Globodera pallida. EPPO Bulletin 36(3):419–420. https://doi.org/10.1111/j.1365-2338.2006.01302.x
FAO (2022) Agricultural production statistics 2000–2021. In: FAOSTAT analytical briefs, No. 60. https://doi.org/10.4060/cc3751en. Accessed 20 Sep 2023
Gartner U, Hein I, Brown LH, Chen X, Mantelin S, Sharma SK, Dandurand LM, Kuhl JC, Jones JT, Bryan GJ, Blok VC (2021) Resisting potato cyst nematodes with resistance. Front Plant Sci 12:661194. https://doi.org/10.3389/fpls.2021.661194
Griffin D, Bourke L, Mullins E, Hennessy M, Phelan S, Steven K, Milbourne D (2022) Potatoes in Ireland: sixty years of potato research and development, market evolution and perspectives on future challenges. Irish J Agric Food Res. https://doi.org/10.15212/ijafr-2020-0144
Handoo ZA, Carta LK, Skantar AM, Chitwood DJ (2012) Description of Globodera ellingtonae n. sp. (Nematoda: Heteroderidae) from Oregon. J Nematol 44:40–57
Jupe F, Witek K, Verweij W, Sliwka J, Pritchard L, Etherington GJ, Maclean D, Cock PJ, Leggett RM, Bryan GJ, Cardle L, Hein I, Jones JDG (2013) Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. Plant J 76:530–544. https://doi.org/10.1111/tpj.12307
Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mardis ER, Ding L, Wilson RK (2012) VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 22:568–576. https://doi.org/10.1101/gr.129684.111
Koseoglou E, van der Wolf JM, Visser RGF, Bai Y (2022) Susceptibility reversed: modified plant susceptibility genes for resistance to bacteria. Trends Plant Sci 27:69–79. https://doi.org/10.1016/j.tplants.2021.07.018
Kreike CM, de Koning JR, Vinke JH, van Ooijen JW, Gebhardt C, Stiekema WJ (1993) Mapping of loci involved in quantitatively inherited resistance to the potato cyst-nematode Globodera rostochiensis pathotype Ro1. Theor Appl Genet 87:464–470. https://doi.org/10.1007/BF00215092
Kreike CM, de Koning JR, Vinke JH, van Ooijen JW, Stiekema WJ (1994) Quantitatively-inherited resistance to Globodera pallida is dominated by one major locus in Solanum spegazzinii. Theor Appl Genet 88:764–769. https://doi.org/10.1007/BF01253983
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923
Lax P, Rondan Dueñas JC, Franco-Ponce J, Gardenal CN, Doucet ME (2014) Morphology and DNA sequence data reveal the presence of Globodera ellingtonae in the Andean region. Contrib Zool 83:227–243. https://doi.org/10.1163/18759866-08304002
Leisner CP, Hamilton JP, Crisovan E, Manrique-Carpintero NC, Marand AP, Newton L, Pham GM, Jiang J, Douches DS, Jansky SH, Buell CR (2018) Genome sequence of M6, a diploid inbred clone of the high-glycoalkaloid-producing tuber-bearing potato species Solanum chacoense, reveals residual heterozygosity. Plant J 94:562–570. https://doi.org/10.1111/tpj.13857
Mburu H, Cortada L, Haukeland S, Ronno W, Nyongesa M, Kinyua Z, Bargul JL, Coyne D (2020) Potato cyst nematodes: a new threat to potato production in East Africa. Front Plant Sci 11:670. https://doi.org/10.3389/fpls.2020.00670
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303. https://doi.org/10.1101/gr.107524.110
Melo ATO, Bartaula R, Hale I (2016) GBS-SNP-CROP: a reference-optional pipeline for SNP discovery and plant germplasm characterization using variable length, paired-end genotyping-by-sequencing data. BMC Bioinf 17:29. https://doi.org/10.1186/s12859-016-0879-y
Milne I, Stephen G, Bayer M, Cock PJ, Pritchard L, Cardle L, Shaw PD, Marshall D (2013) Using Tablet for visual exploration of second-generation sequencing data. Brief Bioinf 14:193–202. https://doi.org/10.1093/bib/bbs012
Pickup J, Roberts AMI, Nijs LJMFD (2018) Quarantine, distribution patterns and sampling. In: Perry RN, Moens M, Jones JT (eds) Cyst nematodes. CABI, Wallingford, pp 128–153
Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e32253. https://doi.org/10.1371/journal.pone.0032253
Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195. https://doi.org/10.1038/nature10158
Ramakrishnan AP, Ritland CE, Blas Sevillano RH, Riseman A (2015) Review of potato molecular markers to enhance trait selection. Am J Potato Res 92:455–472. https://doi.org/10.1007/s12230-015-9455-7
Reid A, Evans F, Mulholland V et al (2015) High-throughput diagnosis of potato cyst nematodes in soil samples. Methods Mol Biol 1302:137–148. https://doi.org/10.1007/978-1-4939-2620-6_11
Sanchez-Puerta MV, Masuelli RW (2011) Evolution of nematode-resistant Mi-1 gene homologs in three species of Solanum. Mol Genet Genom 285:207–218. https://doi.org/10.1007/s00438-010-0596-6
Shaibu AS, Li B, Zhang S, Sun J (2020) Soybean cyst nematode-resistance: gene identification and breeding strategies. Crop J 8:892–904. https://doi.org/10.1016/j.cj.2020.03.001
Sharma SK, Bolser D, de Boer J, Sønderkær M, Amoros W, Carboni MF, D’Ambrosio JM, de la Cruz G, Di Genova A, Douches DS, Eguiluz M, Guo X, Guzman F, Hackett CA, Hamilton JP, Li G, Li Y, Lozano R, Maass A, Marshall D, Martinez D, McLean K, Mejía N, Milne L, Munive S, Nagy I, Ponce O, Ramirez M, Simon R, Thomson SJ, Torres Y, Waugh R, Zhang Z, Huang S, Visser RGF, Bachem CWB, Sagredo B, Feingold SE, Orjeda G, Veilleux RE, Bonierbale M, Jacobs JM, Milbourne D, Martin DM, Bryan GJ (2013) Construction of reference chromosome-scale pseudomolecules for potato: integrating the potato genome with genetic and physical maps. G3 3:2031–2047. https://doi.org/10.1534/g3.113.007153
Siddique S, Jones JT (2021) Advances in understanding plant root response to nematode attack. In: Understanding and improving crop root function. Burleigh Dodds Science Publishing, pp 267–300
Skantar AM, Handoo ZA, Zasada IA, Carta IRE, LK, Chitwood DJ, (2011) Morphological and molecular characterization of Globodera populations from Oregon and Idaho. Phytopathology 101:480–491. https://doi.org/10.1094/PHYTO-01-10-0010
Sun H, Jiao W-B, Krause K, Campoy JA, Goel M, Folz-Donahue K, Kukat C, Huettel B, Schneeberger K (2022) Chromosome-scale and haplotype-resolved genome assembly of a tetraploid potato cultivar. Nat Genet 54:342–348. https://doi.org/10.1038/s41588-022-01015-0
Turner SJ, Subbotin S (2013) Cyst nematodes. In: Perry RN, Moens M (eds) Plant nematology. CABI, Wallingford, pp 109–143
United Nations (2015) UN projects world population to reach 8.5 billion by 2030, driven by growth in developing countries. In: UN News. https://news.un.org/en/story/2015/07/505352-un-projects-world-population-reach-85-billion-2030-driven-growth-developing. Accessed 20 Sep 2023