Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E. coli

Ario de Marco1,2, Elke Deuerling3, Axel Mogk3, Toshifumi Tomoyasu4, Bernd Bukau3
1EMBL Heidelberg, Heidelberg, Germany
2IFOM-IEO Campus for Oncogenomics, Milano, Italy
3ZMBH Universität Heidelberg, Heidelberg, Germany
4Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan

Tóm tắt

The overproduction of recombinant proteins in host cells often leads to their misfolding and aggregation. Previous attempts to increase the solubility of recombinant proteins by co-overproduction of individual chaperones were only partially successful. We now assessed the effects of combined overproduction of the functionally cooperating chaperone network of the E. coli cytosol on the solubility of recombinant proteins. A two-step procedure was found to show the strongest enhancement of solubility. In a first step, the four chaperone systems GroEL/GroES, DnaK/DnaJ/GrpE, ClpB and the small HSPs IbpA/IbpB, were coordinately co-overproduced with recombinant proteins to optimize de novo folding. In a second step, protein biosynthesis was inhibited to permit chaperone mediated refolding of misfolded and aggregated proteins in vivo. This novel strategy increased the solubility of 70% of 64 different heterologous proteins tested up to 42-fold. The engineered E. coli strains and the two-step procedure presented here led to a remarkable increase in the solubility of a various recombinant proteins and should be applicable to a wide range of target proteins produced in biotechnology.

Từ khóa


Tài liệu tham khảo

Bukau B, Deuerling E, Pfund C, Craig EA: Getting newly synthesized proteins into shape. Cell. 2000, 101: 119-122. 10.1016/S0092-8674(00)80806-5. Deuerling E, Bukau B: Chaperone-assisted folding of newly synthesized proteins in the cytosol. Crit Rev Biochem Mol Biol. 2004, 39: 261-277. 10.1080/10409230490892496. Hartl FU, Hayer-Hartl M: Molecular chaperones in the cytosol: from nascent chain to folded protein. Science. 2002, 295: 1852-1858. 10.1126/science.1068408. Young JC, Agashe VR, Siegers K, Hartl FU: Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol. 2004, 5: 781-791. 10.1038/nrm1492. Buchner J, Schmidt M, Fuchs M, Jaenicke R, Rudolph R, Schmid FX, Kiefhaber T: GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry. 1991, 30: 1586-1591. 10.1021/bi00220a020. Schröder H, Langer T, Hartl FU, Bukau B: DnaK, DnaJ, GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J. 1993, 12: 4137-4144. Goloubinoff P, Mogk A, Peres Ben Zvi A, Tomoyasu T, Bukau B: Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc Natl Acad Sci USA. 1999, 96: 13732-13737. 10.1073/pnas.96.24.13732. Mogk A, Tomoyasu T, Goloubinoff P, Rüdiger S, Röder D, Langen H, Bukau B: Identification of thermolabile E. coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J. 1999, 18: 6934-6949. 10.1093/emboj/18.24.6934. Watanabe YH, Motohashi K, Taguchi H, Yoshida M: Heat-inactivated proteins managed by DnaKJ-GrpE-ClpB chaperones are released as a chaperonin-recognizable non-native form. J Biol Chem. 2000, 275: 12388-12392. 10.1074/jbc.275.17.12388. Laskowska E, Wawrzynow A, Taylor A: IbpA and IbpB, the new heat-shock proteins, bind to endogenous Escherichia coli proteins aggregated intracellularly by heat shock. Biochimie. 1996, 78: 117-122. 10.1016/0300-9084(96)82643-5. Mogk A, Deuerling E, Vorderwulbecke S, Vierling E, Bukau B: Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Mol Microbiol. 2003, 50: 585-595. 10.1046/j.1365-2958.2003.03710.x. Veinger L, Diamant S, Buchner J, Goloubinoff P: The small heat shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J Biol Chem. 1998, 273: 11032-11037. 10.1074/jbc.273.18.11032. Jaenicke R, Seckler R: Spontaneous versus assisted protein folding. Molecular Chaperones and Folding Catalysts Regulation, Cellular Function and Mechanism. Edited by: Bukau B. 1999, Amsterdam, Harwood Academic Publishers, 407-436. Kiefhaber T, Rudolph R, Kohler HH, Buchner J: Protein aggregation in vitro and in vivo: a quantitative model of the kinetic competition between folding and aggregation. BioTechnology. 1991, 9: 825-829. 10.1038/nbt0991-825. King J, Betts S: A green light for protein folding. Nature Biotechnol. 1999, 17: 637-638. 10.1038/10848. Schrodel A, de Marco A: Characterization of the aggregates formed during recombinant protein expression in bacteria. BMC Biochem. 2005, 6: 10-10.1186/1471-2091-6-10. Stegemann J, Ventzki R, Schrodel A, de Marco A: Comparative analysis of protein aggregates by blue native electrophoresis and subsequent sodium dodecyl sulfate-polyacrylamide gel electrophoresis in a three-dimensional geometry gel. Proteomics. 2005, 5: 2002-2009. 10.1002/pmic.200401091. Amrein KE, Takacs B, Stieger M, Molnos J, Flint NA, Burn P: Purification and characterization of recombinant human p50csk protein-tyrosine kinase from an Escherichia coli expression system overproducing the bacterial chaperones GroES and GroEL. Proc Natl Acad Sci U S A. 1995, 92: 1048-1052. 10.1073/pnas.92.4.1048. Dale GE, Schonfeld HJ, Langen H, Stieger M: Increased solubility of trimethoprim-resistant type S1 DHFR from Staphylococcus aureus in Escherichia coli cells overproducing the chaperonins GroEL and GroES. Protein Eng. 1994, 7: 925-931. 10.1093/protein/7.7.925. de Marco A, Volrath S, Bruyere T, Law M, Fonne-Pfister R: Recombinant maize protoporphyrinogen IX oxidase expressed in Escherichia coli forms complexes with GroEL and DnaK chaperones. Protein Expr Purif. 2000, 20: 81-86. 10.1006/prep.2000.1274. Nishihara K, Kanemori M, Yanagi H, Yura T: Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. Appl Environ Microbiol. 2000, 66: 884-889. 10.1128/AEM.66.3.884-889.2000. Proudfoot AE, Goffin L, Payton MA, Wells TN, Bernard AR: In vivo and in vitro folding of a recombinant metalloenzyme, phosphomannose isomerase. Biochem J. 1996, 318 ( Pt 2): 437-442. Thomas JG, Baneyx F: Protein folding in the cytoplasm of Escherichia coli: requirements for the DnaK-DnaJ-GrpE and GroEL-GroES molecular chaperone machines. Mol Microbiol. 1996, 21: 1185-1196. 10.1046/j.1365-2958.1996.651436.x. Thomas JG, Baneyx F: Protein misfolding and inclusion body formation in recombinant Escherichia coli cells overexpressing Heat-shock proteins. J Biol Chem. 1996, 271: 11141-7 Record 25 of 52 - MEDLINE (R) 1/96-12/96. 10.1074/jbc.271.19.11141. Yokoyama K, Kikuchi Y, Yasueda H: Overproduction of DnaJ in Escherichia coli improves in vivo solubility of the recombinant fish-derived transglutaminase. Biosci Biotechnol Biochem. 1998, 62: 1205-1210. 10.1271/bbb.62.1205. Lutz R, Bujard H: Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Research. 1997, 25: 1203-1210. 10.1093/nar/25.6.1203. Buchberger A, Schröder H, Hesterkamp T, Schönfeld HJ, Bukau B: Substrate shuttling between the DnaK and GroEL systems indicates a chaperone network promoting protein folding. J Mol Biol. 1996, 261: 328-333. 10.1006/jmbi.1996.0465. Tomoyasu T, Mogk A, Langen H, Goloubinoff P, Bukau B: Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol. Mol Microbiol. 2001, 40: 397-413. 10.1046/j.1365-2958.2001.02383.x. De Marco V, De Marco A, Goldie KN, Correia JJ, Hoenger A: Dimerization properties of a Xenopus laevis kinesin-II carboxy-terminal stalk fragment. EMBO Rep. 2003, 4: 717-722. 10.1038/sj.embor.embor884. Carrio MM, Villaverde A: Protein aggregation as bacterial inclusion bodies is reversible. FEBS Lett. 2001, 489: 29-33. 10.1016/S0014-5793(01)02073-7. Buchberger A, Valencia A, McMacken R, Sander C, Bukau B: The chaperone function of DnaK requires the coupling of ATPase activity with substrate binding through residue E171. EMBO J. 1994, 13: 1687-1695.