Changes of occlusal plane inclination after orthodontic treatment in different dentoskeletal frames

Progress in Orthodontics - Tập 15 Số 1 - 2014
Jinle Li1, Chung How Kau2, Min Wang1
1The State Key Laboratory of Oral Diseases, Department of Prosthodontics, West China School/Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR, China
2Department of Orthodontics, School of Dentistry, University of Alabama at Birmingham, Birmingham, 35294, AL, USA

Tóm tắt

Abstract Background The inclination of the occlusal plane (OP) is related to facial types and experiences physiological growth-related changes. The aims of this research were to determine if there were any differences in the inclination of OP in subjects with three types of skeletal malocclusion and to investigate the characteristics and differences of functional occlusal plane (FOP) compared to bisected occlusal plane (BOP). Methods A sample of 90 Caucasians patients was skeletal-classified into three (n = 30), and pre- and post-treatment cephalograms were digitized. Six linear and 8 angular cephalometric measurements were selected. The changes of OP inclination within each group and the differences among the three groups pre- and post-treatment were compared with paired t test and ANOVA test, respectively. The comparison and correlation between BOP and FOP were analyzed with paired t test and coefficient of correlation, respectively. Results The BOP angle increased in all of the three groups but only had statistically significant differences in skeletal class II patients in a mean of 1.51° (p < 0.05). The FOP-SN angle showed stability (p > 0.05) in all three groups. The inclination of FOP was closely related to that of BOP (p < 0.001) but revealed discrepancies in each group. Conclusions BOP and FOP were statistically significantly steeper in class II subjects compared to the other two groups both before and after treatment. The BOP angle statistically significantly increased by 1.51° in skeletal class II patients. BOP was a more reproducible reference plane compared to FOP during cephalometric tracing process, while FOP showed stability in orthodontically treated patients with all three skeletal patterns.

Từ khóa


Tài liệu tham khảo

Lamarque S: The importance of occlusal plane control during orthodontic mechanotherapy. Am J Orthod Dentofacial Orthop 1995, 107: 548–558. 10.1016/S0889-5406(95)70123-0

Tanaka EM, Sato S: Longitudinal alteration of the occlusal plane and development of different dentoskeletal frames during growth. Am J Orthod Dentofacial Orthop 2008, 134: 602. e1-11 10.1016/j.ajodo.2008.07.010

El-Batouti A, Ogaard B, Bishara SE: Longitudinal cephalometric standards for Norwegians between the ages of 6 and 18 years. Eur J Orthod 1994, 16: 501–509. 10.1093/ejo/16.6.501

Rosati R, Rossetti A, Menezes MD, Ferrario VF, Sforza C: The occlusal plane in the facial context: inter-operator repeatability of a new three-dimensional method. Int J Oral Sci 2012, 4: 34–37. 10.1038/ijos.2012.2

Ogawa T, Koyano K, Suetsugu T: Characteristics of masticatory movement in relation to inclination of occlusal plane. J Oral Rehabil 1997, 24: 652–657. 10.1046/j.1365-2842.1997.00543.x

Batwa W, Hunt NP, Petrie A, Gill D: Effect of occlusal plane on smile attractiveness. Angle Orthod 2011, 82: 218–223. 10.2319/050411-318.1

Fushima K, Kitamura Y, Mita H, Sato S, Suzuki Y, Kim YH: Significance of the cant of the posterior occlusal plane in Class II division 1 malocclusions. Eur J Orthod 1996, 18: 27–40. 10.1093/ejo/18.1.27

Ishizaki K, Suzuki K, Mito T, Tanaka EM, Sato S: Morphologic, functional, and occlusal characterization of mandibular lateral displacement malocclusion. Am J Orthod Dentofacial Orthop 2010, 137: 454. e1–9 e1-9 10.1016/j.ajodo.2009.12.005

Braun S, Legan HL: Changes in occlusion related to the cant of the occlusal plane. Am J Orthod Dentofacial Orthop 1997, 111: 184–188. 10.1016/S0889-5406(97)70214-2

Shimazaki T, Motoyoshi M, Hosoi K, Namura S: The effect of occlusal alteration and masticatory imbalance on the cervical spine. Eur J Orthod 2003, 25: 457–463. 10.1093/ejo/25.5.457

Ogawa T, Koyano K, Suetsugu T: Correlation between inclination of occlusal plane and masticatory movement. J Dent 1998, 26: 105–112. 10.1016/S0300-5712(97)00001-8

Sato M, Motoyoshi M, Hirabayashi M, Hosoi K, Mitsui N, Shimizu N: Inclination of the occlusal plane is associated with the direction of the masticatory movement path. Eur J Orthod 2007, 29: 21–25. 10.1093/ejo/cjl036

Downs WB: Variations in facial relationships: their significance in treatment and prognosis. Eur J Orthod 1948, 34: 812–840. 10.1016/0002-9416(48)90015-3

Braun S, Kim K, Tomazic T, Legan HL: The relationship of the glenoid fossa to the functional occlusal plane. Am J Orthod Dentofacial Orthop 2000, 118: 658–661. 10.1067/mod.2000.111224

Thayer TA: Effects of functional versus bisected occlusal planes on the Wits appraisal. Am J Orthod Dentofacial Orthop 1990, 97: 422–426. 10.1016/0889-5406(90)70114-R

Kattadiyil MT, Goodacre CJ, Naylor WP, Maveli TC: Esthetic smile preferences and the orientation of the maxillary occlusal plane. J Prosthet Dent 2012, 108: 354–361. 10.1016/S0022-3913(12)60192-9

Jeon YJ, Kim YH, Son WS, Hans MG: Correction of a canted occlusal plane with miniscrews in a patient with facial asymmetry. Am J Orthod Dentofacial Orthop 2006, 130: 244–252. 10.1016/j.ajodo.2006.04.016

Gilmore WA: Morphology of the adult mandible in class II, division 1 malocclusion and in excellent occlusion. Angle Orthod 1950, 20: 137–146.

Zimmer B, Nischwitz D: Therapeutic changes in the occlusal plane inclination using intermaxillary elastics. J Orofac Orthop 2012, 73: 377–386. 10.1007/s00056-012-0100-5

Zenab NRY, Hambali TS, Salim J, Mardiati E: Changes of occlusal plane inclination after orthodontic treatment with four premolars extraction in dento-alveolar bimaxillary protrusion cases. Padjadjaran J Dent 2009, 21: 100–103.

Chang HP, Kinoshita Z, Kawamoto T: A study of the growth changes in facial configuration. Eur J Orthod 1993, 15: 493–501. 10.1093/ejo/15.6.493

Houston WJ: The analysis of errors in orthodontic measurements. Am J Orthod 1983, 83: 382–390. 10.1016/0002-9416(83)90322-6

Stahl F, Baccetti T, Franchi L, McNamara JA Jr: Longitudinal growth changes in untreated subjects with Class II Division 1 malocclusion. Am J Orthod Dentofacial Orthop 2008, 134: 125–137. 10.1016/j.ajodo.2006.06.028

Bishara SE: Mandibular changes in persons with untreated and treated Class II division 1 malocclusion. Am J Orthod Dentofacial Orthop 1998, 113: 661–673. 10.1016/S0889-5406(98)70227-6

Ngan PW, Byczek E, Scheick J: Longitudinal evaluation of growth changes in Class II division 1 subjects. Semin Orthod 1997, 3: 222–231. 10.1016/S1073-8746(97)80055-2

Perillo L, Femiano A, Palumbo S, Contardo L, Perinetti G: Skeletal and dental effects produced by functional regulator-2 in pre-pubertal class II patients: a controlled study. Prog Orthod 2013, 14: 18. 10.1186/2196-1042-14-18

Baccetti T, Franchi L, McNamara JA: Growth in the untreated class III subject. Semin Orthod 2007, 13: 130–142. 10.1053/j.sodo.2007.05.006

Alexander AE, McNamara JA Jr, Franchi L, Baccetti T: Semilongitudinal cephalometric study of craniofacial growth in untreated Class III malocclusion. Am J Orthod Dentofacial Orthop 2009, 135: 700. e1–14 e1-14 10.1016/j.ajodo.2009.02.012

Ellis Iii E, McNamara JA Jr: Components of adult class III malocclusion. J Oral Maxillofac Surg 1984, 42: 295–305. 10.1016/0278-2391(84)90109-5

Ochoa BK, Nanda RS: Comparison of maxillary and mandibular growth. Am J Orthod Dentofacial Orthop 2004, 125: 148–159. 10.1016/j.ajodo.2003.03.008

Vukusic N, Lapter M, Muretic Z: Change in the inclination of the occlusal plane during craniofacial growth and development. Collegium Antropol 2000, 24: 145–150.

Thompson WJ: Occlusal plane and overbite. Angle Orthod 1979, 49: 47–55.

Tovstein BC: Behavior of the occlusal plane and related structures in the treatment of class II malocclusion. Angle Orthod 1955, 25: 189–198.