Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sự thay đổi của các thiol không phải protein trong rễ và axit hữu cơ trong dịch mạch tham gia vào sự chuyển vị cadmium của dòng gạo an toàn cadmium (Oryza Sative L.)
Tóm tắt
Việc chọn lựa và nhân giống các giống gạo tích lũy cadmium (Cd) thấp là một phương pháp triển vọng để giảm nồng độ Cd trong hạt. Một dòng gạo an toàn cadmium được chỉ định là D62B (Oryza Sative L.) đã tích lũy nồng độ Cd thấp trong gạo lứt để tiêu thụ an toàn (< 0,2 mg kg−1). D62B là một vật liệu giống có tiềm năng lớn với khả năng vận chuyển Cd tới chồi yếu hơn so với các dòng gạo thông thường. Hiểu biết trước về cơ chế vận chuyển Cd trong D62B đã cung cấp cơ sở lý thuyết cho việc nhân giống các giống gạo mới tích lũy Cd thấp trong tương lai. Một thí nghiệm trong chậu đã được thực hiện để khảo sát sự thay đổi của các thiol không phải protein trong chồi và rễ của D62B so với một dòng gạo thông thường (Luhui17), và sau đó khám phá mối quan hệ giữa sự chuyển vị Cd qua mạch gỗ và nồng độ axit hữu cơ trong dịch mạch của hai dòng gạo bằng một thí nghiệm thủy canh. D62B cho thấy Cd được chuyển vị tới chồi thấp hơn so với Luhui17. Hệ số chuyển vị (TF) của D62B dao động từ 0,11 đến 0,15. Sự tiếp xúc với Cd đã thúc đẩy sự tổng hợp các thiol không phải protein trong hai dòng gạo, đặc biệt là ở rễ. Sự tổng hợp glutathione (GSH) và phytochelatins (PCs) trong rễ của D62B cao hơn so với Luhui17. Nồng độ Cd trong dịch mạch của D62B có mối tương quan tích cực đáng kể với nồng độ axit malic, axit citric và axit tartaric. Nồng độ axit citric và axit tartaric trong dịch mạch của D62B thấp hơn đáng kể so với Luhui17. Không có sự khác biệt đáng kể về axit malic giữa hai dòng gạo. Nhiều GSH và PCs trong rễ của D62B có lợi cho việc giữ lại Cd trong rễ. Hơn nữa, sự tham gia của axit citric và axit tartaric thấp hơn trong chuyển vị Cd trong dịch mạch của D62B dẫn đến sự tích lũy Cd thấp hơn ở chồi.
Từ khóa
#cadmium #gạo an toàn cadmium #thiol không phải protein #axit hữu cơ #chuyển vị cadmium #Oryza Sative L.Tài liệu tham khảo
Adamis PD, Panek AD, Eleutherio EC (2007) Vacuolar compartmentation of the cadmium-glutathione complex protects Saccharomyces cerevisiae from mutagenesis. Toxicol Lett 173:1–7
Akhter MF, Omelon CR, Gordon RA, Moser D, Macfie SM (2013) Localization and chemical speciation of cadmium in the root of barley and lettuce. Environ Exp Bot 100:10–19
Artiushenko T, Syshchykov D, Gryshko V, Čiamporová M, Fiala R, Repka V, Martinka M, Pavlovkin J (2014) Metal uptake, antioxidant status and membrane potential in maize roots exposed to cadmium and nickel. Biologia 69:1142–1147
Centofanti T, Sayers Z, Cabello-Conejo MI, Kidd P, Nishizawa NK, Kakei Y, Davis AP, Sicher RC, Chaney RL (2013) Xylem exudate composition and root-to-shoot nickel translocation in Alyssum species. Plant Soil 373:59–75
Chekmeneva E, Gusmäo R, Díaz-Cruz JM, Arińo C, Esteban M (2011) From cysteine to longer chain thiols: a thermodynamic analysis of cadmium binding by phytochelatins and their fragments. Metallomics 3:838–846
Cheng MM, Wang P, Kopittke PM, Wang A, Sala PWG, Tang CX (2016) Cadmium accumulation is enhanced by ammonium compared to nitrate in two hyperaccumulators, without affecting speciation. J Exp Bot 67:5041–5050
Fernández R, Fernández-Fuego D, Bertrand A, González A (2014) Strategies for Cd accumulation in Dittrichia viscosa (L.) Greuter: role of the cell wall, non-protein thiols and organic acids. Plant Physiol Biochem 78:63–70
Figueira E, Freitas R, Guasch H, Almeida SFP (2014) Efficiency of cadmium chelation by phytochelatins in Nitzschia palea (Kützing) W. Smith. Ecotoxicology 23:285–292
Gajewska E, Skłodowska M (2010) Differential effect of equal copper, cadmium and nickel concentration on biochemical reactions in wheat seedlings. Ecotoxicol Environ Saf 73:996–1003
Ghnaya T, Zaier H, Baioui R, Sghaier S, Lucchini G, Sacchi GA, Lutts S, Abdelly C (2013) Implication of organic acids in the long-distance transport and the accumulation of lead in Sesuvium portulacastrum and Brassica juncea. Chemosphere 90:1449–1454
Gill SS, Tuteja N (2011) Cadmium stress tolerance in crop plants. Plant Signal Behav 6:215–222
Guo B, Liang YC, Zhu YG, Zhao FJ (2007) Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Environ Pollut 147:743–749
Gupta DK, Tohoyama H, Joho M, Inouhe M (2004) Changes in the levels of phytochelatins and related metal-binding peptides in chickpea seedlings exposed to arsenic and different heavy metal ions. J Plant Res 117:253–256
Hasan MK, Liu CC, Wang FN, Ahammed GJ, Zhou J, Xu MX, Yu JQ, Xia XJ (2016) Glutathione-mediated regulation of nitric oxide, S-nitrosothiol and redox homeostasis confers cadmium tolerance by inducing transcription factors and stress response genes in tomato. Chemosphere 161:536–545
Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226
Jozefczak M, Keunen E, Schat H, Bliek M, Hernández LE, Carleer R, Remans T, Bohler S, Vangronsveld J, Cuypers A (2014) Differential response of Arabidopsis leaves and root to cadmium: glutathione-related chelating capacity vs antioxidant capacity. Plant Physiol Biochem 83:1–9
Juneja SVN, Prakash S (2008) Electrophoretic study of chromium speciation in xylem sap of maize (Winter Crop). Chem Speciat Bioavailab 20:55–63
Kato M, Ishikawa S, Igarashi K, Chiba K, Hayashi H, Yanagisawa S, Yoneyama T (2010) Possible chemical forms of cadmium and varietal differences in cadmium concentrations in the phloem sap of rice plants (Oryza sativa L.). Soil Sci Plant Nutr 56:839–847
Kutrowska A, Szelag M (2014) Low-molecular exudation rate organic acids and peptides involved in the long-distance transport of trace metals. Acta Physiol Plant 36:1957–1968
Li SF, Zhang GJ, Gao WJ, Zhao XP, Deng CL, Lu LD (2015a) Plant growth, development and change in GSH level in safflower (Carthamus tinctorius L.) exposed to copper and lead. Arch Biol Sci 67:385–396
Li TQ, Tao Q, Shohag MJI, Yang XE, Sparks DL, Liang YC (2015b) Root cell wall polysaccharides are involved in cadmium hyperaccumulation in Sedum alfredii. Plant Soil 389:387–399
Li H, Luo N, Li YW, Cai QY, Li HY, Mo CH, Wong MH (2017) Cadmium in rice: transport mechanisms, influencing factors and minimizing measures. Environ Pollut 224:622–630
Liu F, Liu XN, Ding C, Wu L (2015) The dynamic simulation of rice growth parameters under cadmium stress with the assimilation of multi-period spectral indices and crop model. Field Crop Res 183:225–234
López-Millán AF, Sagardoy R, Solanas M, Abadía A, Abadía J (2009) Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environ Exp Bot 65:376–385
Lu LL, Tian SK, Zhang J, Yang XE, Labavitch JM, Webb SM, Latimer M, Brown PH (2013) Efficient xylem transport and phloem remobilization of Zn in the hyperaccumulator plant species Sedum alfredii. New Phytol 198:721–731
McNear DH, Chaney RL, Sparks DL (2010) The hyperaccumulator Alyssum murale uses complexation with nitrogen and oxygen donor ligands for Ni transport and storage. Phytochemistry 71:188–200
Mendoza-Cózatl DG, Butko E, Springer F, Torpey JW, Komives EA, Kehr J, Schroeder JI (2010) Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant J 54:249–259
Mnasri M, Ghabriche R, Fourati E, Zaier H, Sabally K, Barrington S, Lutts S, Abdelly C, Ghnaya T (2015) Cd and Ni transport and accumulation in the halophyte Sesuvium portulacastrum: implication of organic acids in these processes. Front Plant Sci 6:156
Montargès-Pelletier E, Chardot V, Echevarria G, Michot LJ, Bauer A, Morel JL (2008) Identification of nickel chelators in three hyperaccumulating plants: an X-ray spectroscopic study. Phytochemistry 69:1695–1709
Nahar K, Hasanuzzaman M, Alam MM, Rahman A, Suzuki T, Fujita M (2016) Polyamine and nitric oxide crosstalk: antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense and methylglyoxal detoxification systems. Ecotoxicol Environ Saf 126:245–255
Nakamura S, Suzui N, Nagasaka T, Komatsu F, Ishioka NS, Itotanabata S, Kawachi N, Rai H, Hattori H, Chino M, Fujimaki S (2013) Application of glutathione to roots selectively inhibits cadmium transport from roots to shoots in oilseed rape. J Exp Bot 64:1073–1081
Nguyen C, Soulier AJ, Masson P, Bussière S, Cornu JY (2016) Accumulation of Cd, Cu and Zn in shoots of maize (Zea mays L.) exposed to 0.8 or 20 nM Cd during vegetative growth and the relation with xylem sap composition. Environ Sci Pollut R 23:3152–3164
Nocito FF, Lancilli C, Dendena B, Lucchini G, Sacchi GA (2011) Cadmium retention in rice roots is influenced by cadmium availability, chelation and translocation. Plant Cell Environ 34:994–1008
Prasad R, Shivay YS (2017) Oxalic acid/oxalates in plants: from self-defence to phytoremediation. Curr Sci 112:1665–1667
Rafiq MT, Aziz R, Yang XE, Xiao WD, Rafiq MK, Ali B, Li TQ (2014) Cadmium phytoavailability to rice (Oryza sativa L.) grown in representative Chinese soils. A model to improve soil environmental quality guidelines for food safety. Ecotoxicol Environ Saf 103:101–107
Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181
Rauser WE (2003) Phytochelatin-based complexes bind various amounts of cadmium in maize seedlings depending on the time of exposure, the concentration of cadmium and the tissue. New Phytol 158:269–278
Saathoff AJ, Ahner B, Spanswick RM, Walker LP (2011) Detection of phytochelatin in the xylem sap of Brassica napus. Environ Eng Sci 28:103–111
Satoh-Nagasawa N, Mori M, Nakazawa N, Kawamoto T, Nagato Y, Sakurai K, Takahashi H, Watanabe A, Akagi H (2012) Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant Cell Physiol 53:213–224
Sghayar S, Ferri A, Lancilli C, Lucchini G, Abruzzese A, Porrini M, Ghnaya T, Nocito FF, Abdelly C, Sacchi GA (2015) Analysis of cadmium translocation, partitioning and tolerance in six barley (Hordeum vulgare L.) cultivars as a function of thiol metabolism. Biol Fert Soils 51:311–320
Sobrino-Plata J, Meyssen D, Cuypers A, Escobar C, Hernández LE (2014) Glutathione is a key antioxidant metabolite to cope with mercury and cadmium stress. Plant Soil 377:369–381
Song WE, Chen SB, Liu JF, Chen L, Song NN, Li N, Liu B (2015) Variation of Cd concentration in various rice cultivars and derivation of cadmium toxicity thresholds for paddy soil by species-sensitivity distribution. J Integr Agr 14:1845–1854
Strathmann TJ, Myneni SCB (2004) Speciation of aqueous Ni(II)-carboxylate and Ni(II)-fulvic acid solutions: combined ATR-FTIR and XAFS analysis. Geochim Cosmochim Acta 68:3441–3458
Sylwia W, Anna R, Ewa B, Stephan C, Maria AD (2010) The role of subcellular distribution of cadmium and phytochelatins in the generation of distinct phenotypes of AtPCS1- and CePCS3- expressing tobacco. J Plant Physiol 167:981–988
Tamás L, Alemayehu A, Mistrík I, Zelinová V (2015) Extracellular glutathione recycling by γ-glutamyl transferase in barley root tip exposed to cadmium. Environ Exp Bot 118:32–39
Tarhan L, Kavakcioglu B (2015) Glutathione metabolism in Urtica dioica in response to cadmium based oxidative stress. Biol Plant 60:1–10
Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S (2009) Root-to-shoot cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. J Exp Bot 60:2677–2688
Wang FJ, Wang M, Liu ZP, Shi Y, Han TQ, Ye YY, Gong N, Sun JW, Zhu C (2015) Different responses of low grain-Cd-accumulating and high grain-Cd-accumulating rice cultivars to Cd stress. Plant Physiol Biochem 96:261–269
Wei ZG, Wong JW, Hong FS, Zhao HY, Li HX, Hu F (2007) Determination of inorganic and organic anions in xylem saps of two contrasting oilseed rape (Brassica juncea L.) varieties: roles of anions in long-distance transport of cadmium. Microchem J 86:53–59
White-Monsant AC, Tang C (2013) Organic acids are not specifically involved in the nitrate-enhanced Zn hyperaccumulation mechanism in Noccaea caerulescens. Environ Exp Bot 91:12–21
Wu ZC, Zhao XH, Sun XS, Tan QL, Tang YF, Nie ZJ, Qu CJ, Chen ZX, Hu CX (2015a) Antioxidant enzyme systems and the ascorbate-glutathione cycle as contributing factors to cadmium accumulation and tolerance in two oilseed rape cultivars (Brassica napus L.) under moderate cadmium stress. Chemosphere 138:526–536
Wu ZC, Zhao XH, Sun XC, Tan QL, Tang YF, Nie ZJ, Hu CX (2015b) Xylem transport and gene expression play decisive roles in cadmium accumulation in shoots of two oilseed rape cultivars (Brassica napus). Chemosphere 119:1217–1223
Xu Q, Wang CQ, Li SG, Li B, Li QQ, Chen GD, Chen WL, Wang F (2017a) Cadmium adsorption, chelation and compartmentalization limit root-to-shoot translocation of cadmium in rice (Oryza sativa L.). Environ Sci Pollut Res 24:1–12
Xu XX, Zhang SR, Xian JR, Yang ZB, Cheng Z, Li T, Jia YX, Pu YL, Li Y (2017b) Subcellular distribution, chemical forms and thiol synthesis involved in cadmium tolerance and detoxification in Siegesbeckia orientalis L. Int J Phytorem 20:973–980
Ye XX, Ma YB, Sun B (2012) Influence of soil type and genotype on Cd bioavailability and uptake by rice and implications for food safety. J Environ Sci 24:1647–1654
Yu H, Wang JL, Wei F, Yuan JG, Yang ZY (2006) Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Sci Total Environ 370:302–309
Zhang ZC, Gao X, Qiu BS (2008) Detection of phytochelatins in the hyperaccumulator Sedum alfredii exposed to cadmium and lead. Phytochemistry 69:911–918
Zhang L, Zhang XZ, Li TX, Yu HY, Ji L (2014a) Effects of cadmium stress on uptake and distribution of cadmium in different rice varieties. J Agro-Environ Sci 33:2288–2295
Zhang HJ, Zhang XZ, Li TX, Huang F (2014b) Variation of cadmium uptake, translocation among rice lines and detecting for potential cadmium-safe cultivars. Environ Earth Sci 71:277–286
Zhang L, Zhang XZ, Li TX, Ji L, Zheng T (2015) Cd uptake and distribution characteristics of Cd pollution-safe rice materials. Sci Agric Sin 48:174–184
