Changes in Aβ non-nociceptive primary sensory neurons in a rat model of osteoarthritis pain

Molecular Pain - Tập 6 - Trang 1-13 - 2010
Qi Wu1, James L Henry1
1Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Canada

Tóm tắt

Pain is a major debilitating factor in osteoarthritis (OA), yet few mechanism-based therapies are available. To address the need to understand underlying mechanisms the aim of the present study was to determine changes in sensory neurons in an animal model of OA pain. The model displayed typical osteoarthritis pathology characterized by cartilage degeneration in the knee joint and also manifested knee pathophysiology (edema and increased vasculature permeability of the joint) and altered nociception of the affected limb (hind paw tenderness and knee articulation-evoked reduction in the tail flick latency). Neurons included in this report innervated regions throughout the entire hind limb. Aβ-fiber low threshold mechanoreceptors exhibited a slowing of the dynamics of action potential (AP) genesis, including wider AP duration and slower maximum rising rate, and muscle spindle neurons were the most affected subgroup. Only minor AP configuration changes were observed in either C- or Aδ-fiber nociceptors. Thus, at one month after induction of the OA model Aβ-fiber low threshold mechanoreceptors but not C- or Aδ-fiber nociceptors had undergone changes in electrophysiological properties. If these changes reflect a change in functional role of these neurons in primary afferent sensory processing, then Aβ-fiber non-nociceptive primary sensory neurons may be involved in the pathogenesis of OA pain. Further, it is important to point out that the patterns of the changes we observed are consistent with observations in models of peripheral neuropathy but not models of peripheral inflammation.

Tài liệu tham khảo

Jordan J, Luta G, Renner J, Dragomir A, Hochberg M, Fryer J: Knee pain and knee osteoarthritis severity in self-reported task specific disability: the Johnston County Osteoarthritis Project. J Rheumatol 1997, 24: 1344–1349. McDougall JJ, Watkins L, Li Z: Vasoactive intestinal peptide (VIP) is a modulator of joint pain in a rat model of osteoarthritis. Pain 2006, 123: 98–105. 10.1016/j.pain.2006.02.015 Schaible HG, Schmidt RF: Effects of an experimental arthritis on the sensory properties of fine articular afferent units. J Neurophysiol 1985, 54: 1109–1122. Schuelert N, McDougall JJ: Electrophysiological evidence that the vasoactive intestinal peptide receptor antagonist VIP6–28 reduces nociception in an animal model of osteoarthritis. Osteoarthritis Cartilage 2006, 14: 1155–1162. 10.1016/j.joca.2006.04.016 Mach DB, Rogers SD, Sabino MC, Luger NM, Schwei MJ, Pomonis JD, Keyser CP, Clohisy DR, Adams DJ, O'Leary P, Mantyh PW: Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience 2002, 113: 155–166. 10.1016/S0306-4522(02)00165-3 Kean WF, Kean R, Buchanan WW: Osteoarthritis: symptoms, signs and source of pain. Inflammopharmacology 2004, 12: 3–31. 10.1163/156856004773121347 Nikolajsen L, Brandsborg B, Lucht U, Jensen TS, Kehlet H: Chronic pain following total hip arthroplasty: a nationwide questionnaire study. Acta Anaesthesiol Scand 2006, 50: 495–500. 10.1111/j.1399-6576.2006.00976.x Barrett DS, Cobb AG, Bentley G: Joint proprioception in normal, osteoarthritic and replaced knees. J Bone Joint Surg Br 1991, 73: 53–56. Hurley MV, Scott DL, Rees J, Newham DJ: Sensorimotor changes and functional performance in patients with knee osteoarthritis. Ann Rheum Dis 1997, 56: 641–648. 10.1136/ard.56.11.641 Katz WA: Osteoarthritis: clinical presentations. In Osteoarthritis: diagnosis and medical/surgical management. 3rd edition. Edited by: Moskowitz RW, Howell DS, Altman RD, Buckwalter JA, Goldberg V. W.B. Saunders; 2001:231–238. Sharma L: Proprioceptive impairment in knee osteoarthritis. Rheum Dis Clin North Am 1999, 25: 299–314. 10.1016/S0889-857X(05)70069-7 Shakoor N, Agrawal A, Block JA: Reduced lower extremity vibratory perception in osteoarthritis of the knee. Arthritis Rheum 2008, 59: 117–121. 10.1002/art.23241 Djouhri L, Lawson SN: Changes in somatic action potential shape in guinea-pig nociceptive primary afferent neurones during inflammation in vivo. J Physiol 1999, 520: 565–576. 10.1111/j.1469-7793.1999.t01-1-00565.x Djouhri L, Lawson SN: Differences in the size of the somatic action potential overshoot between nociceptive and non-nociceptive dorsal root ganglion neurones in the guinea-pig. Neuroscience 2001, 108: 479–491. 10.1016/S0306-4522(01)00423-7 Djouhri L, Koutsikou S, Fang X, McMullan S, Lawson SN: Spontaneous pain, both neuropathic and inflammatory, is related to frequency of spontaneous firing in intact C-fiber nociceptors. J Neurosci 2006, 26: 1281–1292. 10.1523/JNEUROSCI.3388-05.2006 Michaelis M, Liu X, Janig W: Axotomized and intact muscle afferents but no skin afferents develop ongoing discharges of dorsal root ganglion origin after peripheral nerve lesion. J Neurosci 2000, 20: 2742–2748. Newton RA, Bingham S, Davey PD, Medhurst AD, Piercy V, Raval P, Parsons AA, Sanger GJ, Case CP, Lawson SN: Identification of differentially expressed genes in dorsal root ganglia following partial sciatic nerve injury. Neuroscience 2000, 95: 1111–1120. 10.1016/S0306-4522(99)00515-1 Rausch O, Newton RA, Bingham S, Macdonald R, Case CP, Sanger GJ, Lawson SN, Reith AD: Nerve injury-associated kinase: a sterile 20-like protein kinase up-regulated in dorsal root ganglia in a rat model of neuropathic pain. Neuroscience 2000, 101: 767–777. 10.1016/S0306-4522(00)00392-4 Xu GY, Huang LY, Zhao ZQ: Activation of silent mechanoreceptive cat C and Adelta sensory neurons and their substance P expression following peripheral inflammation. J Physiol 2000, 528: 339–348. 10.1111/j.1469-7793.2000.00339.x Abdulla FA, Smith PA: Axotomy- and autotomy-induced changes in the excitability of rat dorsal root ganglion neurons. J Neurophysiol 2001, 85: 630–643. Kim YI, Na HS, Kim SH, Han HC, Yoon YW, Sung B, Nam HJ, Shin SL, Hong SK: Cell type-specific changes of the membrane properties of peripherally-axotomized dorsal root ganglion neurons in a rat model of neuropathic pain. Neuroscience 1998, 86: 301–309. 10.1016/S0306-4522(98)00022-0 Liu B, Eisenach JC: Hyperexcitability of axotomized and neighboring unaxotomized sensory neurons is reduced days after perineural clonidine at the site of injury. J Neurophysiol 2005, 94: 3159–3167. 10.1152/jn.00623.2005 Liu CN, Wall PD, Ben-Dor E, Michaelis M, Amir R, Devor M: Tactile allodynia in the absence of C-fiber activation: altered firing properties of DRG neurons following spinal nerve injury. Pain 2000, 85: 503–521. 10.1016/S0304-3959(00)00251-7 Ma C, Shu Y, Zheng Z, Chen Y, Yao H, Greenquist KW, White FA, LaMotte RH: Similar electrophysiological changes in axotomized and neighboring intact dorsal root ganglion neurons. J Neurophysiol 2003, 89: 1588–1602. 10.1152/jn.00855.2002 Sapunar D, Ljubkovic M, Lirk P, McCallum JB, Hogan QH: Distinct membrane effects of spinal nerve ligation on injured and adjacent dorsal root ganglion neurons in rats. Anesthesiology 2005, 103: 360–376. 10.1097/00000542-200508000-00020 Stebbing MJ, Eschenfelder S, Habler HJ, Acosta MC, Janig W, McLachlan EM: Changes in the action potential in sensory neurones after peripheral axotomy in vivo. Neuroreport 1999, 10: 201–206. 10.1097/00001756-199902050-00001 Zhang JM, Song XJ, LaMotte RH: Enhanced excitability of sensory neurons in rats with cutaneous hyperalgesia produced by chronic compression of the dorsal root ganglion. J Neurophysiol 1999, 82: 3359–3366. Wu Q, Henry JL: Delayed onset of changes in soma action potential genesis in nociceptive A-beta DRG neurons in vivo in a rat model of osteoarthritis. Mol Pain 2009, 5: 57. 10.1186/1744-8069-5-57 Appleton CT, McErlain DD, Henry JL, Holdsworth DW, Beier F: Molecular and histological analysis of a new rat model of experimental knee osteoarthritis. Ann N Y Acad Sci 2007, 1117: 165–174. 10.1196/annals.1402.022 Janusz MJ, Bendele AM, Brown KK, Taiwo YO, Hsieh L, Heitmeyer SA: Induction of osteoarthritis in the rat by surgical tear of the meniscus: Inhibition of joint damage by a matrix metalloproteinase inhibitor. Osteoarthritis Cartilage 2002, 10: 785–791. 10.1053/joca.2002.0823 Pitcher GM, Ritchie J, Henry JL: Paw withdrawal threshold in the von Frey hair test is influenced by the surface on which the rat stands. J Neurosci Methods 1999, 87: 185–193. 10.1016/S0165-0270(99)00004-7 Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL: Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994, 53: 55–63. 10.1016/0165-0270(94)90144-9 Cridland RA, Henry JL: Facilitation of the tail-flick reflex by noxious cutaneous stimulation in the rat: antagonism by a substance P analogue. Brain Res 1988, 462: 15–21. 10.1016/0006-8993(88)90579-3 Pitcher GM, Yashpal K, Coderre TJ, Henry JL: Mechanisms underlying antinociception provoked by heterosegmental noxious stimulation in the rat tail-flick test. Neuroscience 1995, 65: 273–281. 10.1016/0306-4522(94)00477-M Romita VV, Henry JL: Intense peripheral electrical stimulation differentially inhibits tail vs. limb withdrawal reflexes in the rat. Brain Res 1996, 720: 45–53. 10.1016/0006-8993(96)00105-9 Lawson SN, Crepps BA, Perl ER: Relationship of substance P to afferent characteristics of dorsal root ganglion neurones in guinea-pig. J Physiol 1997, 505: 177–191. 10.1111/j.1469-7793.1997.00177.x Fang X, McMullan S, Lawson SN, Djouhri L: Electrophysiological differences between nociceptive and non-nociceptive dorsal root ganglion neurones in the rat in vivo. J Physiol 2005, 565: 927–943. 10.1113/jphysiol.2005.086199 Villiere V, McLachlan EM: Electrophysiological properties of neurons in intact rat dorsal root ganglia classified by conduction velocity and action potential duration. J Neurophysiol 1996, 76: 1924–1941. Xu ZQ, Zhang X, Grillner S, Hokfelt T: Electrophysiological studies on rat dorsal root ganglion neurons after peripheral axotomy: changes in responses to neuropeptides. Proc Natl Acad Sci USA 1997, 94: 13262–13266. 10.1073/pnas.94.24.13262 Hawker GA, Stewart L, French MR, Cibere J, Jordan JM, March L, Suarez-Almazor M, Gooberman-Hill R: Understanding the pain experience in hip and knee osteoarthritis--an OARSI/OMERACT initiative. Osteoarthritis Cartilage 2008, 16: 415–422. 10.1016/j.joca.2007.12.017 Salo PT, Theriault E: Number, distribution and neuropeptide content of rat knee joint afferents. J Anat 1997, 190: 515–522. 10.1046/j.1469-7580.1997.19040515.x Hannan MT, Felson DT, Pincus T: Analysis of the discordance between radiographic changes and knee pain in osteoarthritis of the knee. J Rheumatol 2000, 27: 1513–1517. Hochberg MC, Lawrence RC, Everett DF, Cornoni-Huntley J: Epidemiologic associations of pain in osteoarthritis of the knee: data from the National Health and Nutrition Examination Survey and the National Health and Nutrition Examination-I Epidemiologic Follow-up Survey. Semin Arthritis Rheum 1989, 18: 4–9. 10.1016/0049-0172(89)90008-5 Lethbridge-Cejku M, Scott WW Jr, Reichle R, Ettinger WH, Zonderman A, Costa P, Plato CC, Tobin JD, Hochberg MC: Association of radiographic features of osteoarthritis of the knee with knee pain: data from the Baltimore Longitudinal Study of Aging. Arthritis Care Res 1995, 8: 182–188. 10.1002/art.1790080311 Mantyh PW: Cancer pain and its impact on diagnosis, survival and quality of life. Nat Rev Neurosci 2006, 7: 797–809. 10.1038/nrn1914 Peters CM, Ghilardi JR, Keyser CP, Kubota K, Lindsay TH, Luger NM, Mach DB, Schwei MJ, Sevcik MA, Mantyh PW: Tumor-induced injury of primary afferent sensory nerve fibers in bone cancer pain. Exp Neurol 2005, 193: 85–100. 10.1016/j.expneurol.2004.11.028 Ivanavicius SP, Ball AD, Heapy CG, Westwood FR, Murray F, Read SJ: Structural pathology in a rodent model of osteoarthritis is associated with neuropathic pain: increased expression of ATF-3 and pharmacological characterisation. Pain 2007, 128: 272–282. 10.1016/j.pain.2006.12.022 Bulling DG, Kelly D, Bond S, McQueen DS, Seckl JR: Adjuvant-induced joint inflammation causes very rapid transcription of beta-preprotachykinin and alpha-CGRP genes in innervating sensory ganglia. J Neurochem 2001, 77: 372–382. 10.1046/j.1471-4159.2001.00175.x Hanesch U, Pfrommer U, Grubb BD, Heppelmann B, Schaible HG: The proportion of CGRP-immunoreactive and SP-mRNA containing dorsal root ganglion cells is increased by a unilateral inflammation of the ankle joint of the rat. Regul Pept 1993, 46: 202–203. 10.1016/0167-0115(93)90033-5 Devor M: Sodium channels and mechanisms of neuropathic pain. J Pain 2006, 7: S3-S12. 10.1016/j.jpain.2005.09.006 Devor M: Ectopic discharge in Abeta afferents as a source of neuropathic pain. Exp Brain Res 2009, 196: 115–128. 10.1007/s00221-009-1724-6 Fukuoka T, Kobayashi K, Yamanaka H, Obata K, Dai Y, Noguchi K: Comparative study of the distribution of the alpha-subunits of voltage-gated sodium channels in normal and axotomized rat dorsal root ganglion neurons. J Comp Neurol 2008, 510: 188–206. 10.1002/cne.21786