Change of Left Ventricular Geometric Pattern in Patients with Preserved Ejection Fraction Undergoing Coronary Artery Bypass Grafting

Journal of Cardiovascular Translational Research - Tập 15 - Trang 1444-1454 - 2022
Han Wang1, Bing Zhang1, Wei-chun Wu1, Zhen-hui Zhu1, Hao Wang1
1Department of Echocardiography, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China

Tóm tắt

Left ventricular (LV) remodeling and geometric patterns are associated with variations in prognosis. Two hundred twenty-eight patients who underwent selective isolated coronary artery bypass grafting (CABG) were included, divided into normal geometry, concentric remodeling, concentric hypertrophy, and eccentric hypertrophy at baseline. More than half participants with normal geometry at baseline remained in that category, and similar ratio of concentric remodeling reverted to normal geometry on follow-up. The concentric hypertrophy at baseline tended to progress to eccentric geometry rather than normal geometry, while changes from eccentric to concentric hypertrophy was uncommon. iLVEDD had a significant association with an increased risk of developing an abnormal geometric pattern from a normal or concentric remodeling pattern, and iLVESD and LAScd involved in the regression from an abnormal geometric pattern. Thus, dynamic changes in LV geometric pattern are common on 1-year follow-up after CABG and LA strain has an incremental role for early detection in this process.

Tài liệu tham khảo

Kostuk, W. J., Kazamias, T. M., Gander, M. P., Simon, A. L., & Ross, J., Jr. (1973). Left ventricular size after acute myocardial infarction. Serial changes and their prognostic significance. Circulation, 47, 1174–1179. https://doi.org/10.1161/01.cir.47.6.1174 Erlebacher, J. A., Weiss, J. L., Weisfeldt, M. L., & Bulkley, B. H. (1984). Early dilation of the infarcted segment in acute transmural myocardial infarction: Role of infarct expansion in acute left ventricular enlargement. Journal of the American College of Cardiology, 4, 201–208. https://doi.org/10.1016/s0735-1097(84)80203-x Pfeffer, M. A., & Braunwald, E. (1990). Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation, 81, 1161–1172. https://doi.org/10.1161/01.cir.81.4.1161 Artham, S. M., Lavie, C. J., Milani, R. V., Patel, D. A., Verma, A., & Ventura, H. O. (2009). Clinical impact of left ventricular hypertrophy and implications for regression. Progress in Cardiovascular Diseases, 52, 153–167. https://doi.org/10.1016/j.pcad.2009.05.002 Patel, D. A., Lavie, C. J., Milani, R. V., Gilliland, Y., Shah, S., & Ventura, H. O. (2012). Association of Left Ventricular Geometry With Left Atrial Enlargement in Patients With Preserved Ejection Fraction. Congestive Heart Failure, 18, 4–8. https://doi.org/10.1111/j.1751-7133.2011.00264.x Moller, J. E., Hillis, G. S., Oh, J. K., Seward, J. B., Reeder, G. S., Wright, R. S., Park, S. W., Bailey, K. R., & Pellikka, P. A. (2003). Left atrial volume: A powerful predictor of survival after acute myocardial infarction. Circulation, 107, 2207–2212. https://doi.org/10.1161/01.CIR.0000066318.21784.43 Lang, R. M., Badano, L. P., Mor-Avi, V., Afilalo, J., Armstrong, A., Ernande, L., Flachskampf, F. A., Foster, E., Goldstein, S. A., Kuznetsova, T., Lancellotti, P., Muraru, D., Picard, M. H., Rietzschel, E. R., Rudski, L., Spencer, K. T., Tsang, W., & Voigt, J. U. (2015). Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. European Heart Journal Cardiovascular Imaging, 16, 233–270. https://doi.org/10.1093/ehjci/jev014 Zhu, P., Dai, Y., Qiu, J., Xu, H., Liu, J., & Zhao, Q. (2020). Prognostic implications of left ventricular geometry in coronary artery bypass grafting patients. Quantitative Imaging in Medicine and Surgery, 10, 2274–2284. https://doi.org/10.21037/qims-19-926 Cheitlin, M. D., Armstrong, W. F., Aurigemma, G. P., Beller, G. A., Bierman, F. Z., Davis, J. L., Douglas, P. S., Faxon, D. P., Gillam, L. D., Kimball, T. R., Kussmaul, W. G., Pearlman, A. S., Philbrick, J. T., Rakowski, H., Thys, D. M., Antman, E. M., Smith, S. C., Jr., Alpert, J. S., Gregoratos, G., … Acc, Aha, Ase. (2003). ACC/AHA/ASE 2003 Guideline Update for the Clinical Application of Echocardiography: summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASE Committee to Update the 1997 Guidelines for the Clinical Application of Echocardiography). Journal of the American Society of Echocardiography, 16, 1091–1110. https://doi.org/10.1016/S0894-7317(03)00685-0 Jneid, H., Addison, D., Bhatt, D. L., Fonarow, G. C., Gokak, S., Grady, K. L., Green, L. A., Heidenreich, P. A., Ho, P. M., Jurgens, C. Y., King, M. L., Kumbhani, D. J., & Pancholy, S. (2017). AHA/ACC Clinical Performance and Quality Measures for Adults With ST-Elevation and Non-ST-Elevation Myocardial Infarction: A Report of the American College of Cardiology/American Heart Association Task Force on Performance Measures. Circulation. Cardiovascular Quality and Outcomes, 2017, 10. https://doi.org/10.1161/HCQ.0000000000000032 Schwarzl, M., Ojeda, F., Zeller, T., Seiffert, M., Becher, P. M., Munzel, T., Wild, P. S., Blettner, M., Lackner, K. J., Pfeiffer, N., Beutel, M. E., Blankenberg, S., & Westermann, D. (2016). Risk factors for heart failure are associated with alterations of the LV end-diastolic pressure-volume relationship in non-heart failure individuals: Data from a large-scale, population-based cohort. European Heart Journal, 37, 1807–1814. https://doi.org/10.1093/eurheartj/ehw120 Verma, A., Pfeffer, M. A., Skali, H., Rouleau, J., Maggioni, A., McMurray, J. J., Califf, R. M., Velazquez, E. J., & Solomon, S. D. (2011). Incremental value of echocardiographic assessment beyond clinical evaluation for prediction of death and development of heart failure after high-risk myocardial infarction. American Heart Journal, 161, 1156–1162. https://doi.org/10.1016/j.ahj.2011.03.024 Thomas, L., Marwick, T. H., Popescu, B. A., Donal, E., & Badano, L. P. (2019). Left atrial structure and function, and left ventricular diastolic dysfunction: JACC state-of-the-art review. Journal of the American College of Cardiology, 73, 1961–1977. https://doi.org/10.1016/j.jacc.2019.01.059 Deferm, S., Martens, P., Verbrugge, F. H., Bertrand, P. B., Dauw, J., Verhaert, D., Dupont, M., Vandervoort, P. M., & Mullens, W. (2020). LA Mechanics in decompensated heart failure: Insights from strain echocardiography with invasive hemodynamics. JACC: Cardiovascular Imaging, 13, 1107–1115. https://doi.org/10.1016/j.jcmg.2019.12.008 Xue, J., Xu, X. S., Zhu, X. Q., Li, Z. Z., Zhang, X. G., Ma, Y. T., Yang, W. H., Liu, L. Y., & Yue, Y. H. (2020). Left atrial enlargement is associated with stroke severity with cardioembolic and cryptogenic subtypes in a Chinese population. Journal of Stroke and Cerebrovascular Diseases, 29, 104767. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104767 Abdelghani Abdelzaher, M., & Atteia, W. M. (2014). Left atrial geometry and pump function in ischemic cardiomyopathy. Int J Cardiol Heart Vasc, 5, 45–50. https://doi.org/10.1016/j.ijcha.2014.10.009 Zhang, J., Jiang, T., Hou, Y., Chen, F., Yang, K., Sang, W., Wu, H., Ma, Y., Xu, F., & Chen, Y. (2020). Five-year outcomes comparing percutaneous coronary intervention with drug-eluting stents versus coronary artery bypass grafting in patients with left main coronary artery disease: A systematic review and meta-analysis. Atherosclerosis, 308, 50–56. https://doi.org/10.1016/j.atherosclerosis.2020.06.024 Wachtell, K., Dahlof, B., Rokkedal, J., Papademetriou, V., Nieminen, M. S., Smith, G., Gerdts, E., Boman, K., Bella, J. N., & Devereux, R. B. (2002). Change of left ventricular geometric pattern after 1 year of antihypertensive treatment: The Losartan Intervention For Endpoint reduction in hypertension (LIFE) study. American Heart Journal, 144, 1057–1064. https://doi.org/10.1067/mhj.2002.126113 Krishnamoorthy, A., Brown, T., Ayers, C. R., Gupta, S., Rame, J. E., Patel, P. C., Markham, D. W., & Drazner, M. H. (2011). Progression from normal to reduced left ventricular ejection fraction in patients with concentric left ventricular hypertrophy after long-term follow-up. American Journal of Cardiology, 108, 997–1001. https://doi.org/10.1016/j.amjcard.2011.05.037 Levy, D., Garrison, R. J., Savage, D. D., Kannel, W. B., & Castelli, W. P. (1990). Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. New England Journal of Medicine, 322, 1561–1566. https://doi.org/10.1056/NEJM199005313222203 Mathew, J., Sleight, P., Lonn, E., Johnstone, D., Pogue, J., Yi, Q., Bosch, J., Sussex, B., Probstfield, J., Yusuf, S., Heart outcomes prevention evaluation I. (2001). Reduction of cardiovascular risk by regression of electrocardiographic markers of left ventricular hypertrophy by the angiotensin-converting enzyme inhibitor ramipril. Circulation, 104, 1615–1621. https://doi.org/10.1161/hc3901.096700 Verdecchia, P., Schillaci, G., Borgioni, C., Ciucci, A., Gattobigio, R., Zampi, I., Reboldi, G., & Porcellati, C. (1998). Prognostic significance of serial changes in left ventricular mass in essential hypertension. Circulation, 97, 48–54. https://doi.org/10.1161/01.cir.97.1.48 Velagaleti, R. S., Gona, P., Pencina, M. J., Aragam, J., Wang, T. J., Levy, D., D’Agostino, R. B., Lee, D. S., Kannel, W. B., Benjamin, E. J., & Vasan, R. S. (2014). Left ventricular hypertrophy patterns and incidence of heart failure with preserved versus reduced ejection fraction. American Journal of Cardiology, 113, 117–122. https://doi.org/10.1016/j.amjcard.2013.09.028 Inoko, M., Kihara, Y., Morii, I., Fujiwara, H., & Sasayama, S. (1994). Transition from compensatory hypertrophy to dilated, failing left ventricles in Dahl salt-sensitive rats. American Journal of Physiology, 267, H2471-2482. https://doi.org/10.1152/ajpheart.1994.267.6.H2471 Qu, P., Hamada, M., Ikeda, S., Hiasa, G., Shigematsu, Y., & Hiwada, K. (2000). Time-course changes in left ventricular geometry and function during the development of hypertension in Dahl salt-sensitive rats. Hypertension Research, 23, 613–623. https://doi.org/10.1291/hypres.23.613 Vianna-Pinton, R., Moreno, C. A., Baxter, C. M., Lee, K. S., Tsang, T. S., & Appleton, C. P. (2009). Two-dimensional speckle-tracking echocardiography of the left atrium: Feasibility and regional contraction and relaxation differences in normal subjects. Journal of the American Society of Echocardiography, 22, 299–305. https://doi.org/10.1016/j.echo.2008.12.017 Leitman, M., Lysyansky, P., Sidenko, S., Shir, V., Peleg, E., Binenbaum, M., Kaluski, E., Krakover, R., & Vered, Z. (2004). Two-dimensional strain-a novel software for real-time quantitative echocardiographic assessment of myocardial function. Journal of the American Society of Echocardiography, 17, 1021–1029. https://doi.org/10.1016/j.echo.2004.06.019