Cerebral autoregulation and neurovascular coupling are progressively impaired during septic shock: an experimental study

Intensive Care Medicine Experimental - Tập 8 - Trang 1-20 - 2020
Lorenzo Ferlini1, Fuhong Su2, Jacques Creteur2, Fabio Silvio Taccone2, Nicolas Gaspard1
1Department of Neurology, Erasme Hospital, Université Libre de Bruxelles, Bruxelles, Belgium
2Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Bruxelles, Belgium

Tóm tắt

Alteration of the mechanisms of cerebral blood flow (CBF) regulation might contribute to the pathophysiology of sepsis-associated encephalopathy (SAE). However, previous clinical studies on dynamic cerebral autoregulation (dCA) in sepsis had several cofounders. Furthermore, little is known on the potential impairment of neurovascular coupling (NVC) in sepsis. The aim of our study was to determine the presence and time course of dCA and NVC alterations in a clinically relevant animal model and their potential impact on the development of SAE. Thirty-six anesthetized, mechanically ventilated female sheep were randomized to sham procedures (sham, n = 15), sepsis (n = 14), or septic shock (n = 7). Blood pressure, CBF, and electrocorticography were continuously recorded. Pearson’s correlation coefficient Lxa and transfer function analysis were used to estimate dCA. NVC was assessed by the analysis of CBF variations induced by cortical gamma activity (Eγ) peaks and by the magnitude-squared coherence (MSC) between the spontaneous fluctuations of CBF and Eγ. Cortical function was estimated by the alpha-delta ratio. Wilcoxon signed rank and rank sum tests, Friedman tests, and RMANOVA test were used as appropriate. Sepsis and sham animals did not differ neither in dCA nor in NVC parameters. A significant impairment of dCA occurred only after septic shock (Lxa, p = 0.03, TFA gain p = 0.03, phase p = 0.01). Similarly, NVC was altered during septic shock, as indicated by a lower MSC in the frequency band 0.03–0.06 Hz (p < 0.001). dCA and NVC impairments were associated with cortical dysfunction (reduction in the alpha-delta ratio (p = 0.03)). A progressive loss of dCA and NVC occurs during septic shock and is associated with cortical dysfunction. These findings indicate that the alteration of mechanisms controlling cortical perfusion plays a late role in the pathophysiology of SAE and suggest that alterations of CBF regulation mechanisms in less severe phases of sepsis reported in clinical studies might be due to patients’ comorbidities or other confounders. Furthermore, a mean arterial pressure targeting therapy aiming to optimize dCA might not be sufficient to prevent neuronal dysfunction in sepsis since it would not improve NVC.

Tài liệu tham khảo

Gofton TE, Young GB (2012) Sepsis-associated encephalopathy. Nat Rev Neurol 8:557–566. https://doi.org/10.1038/nrneurol.2012.183 Sprung CL, Peduzzi PN, Shatney CH, Schein RH, Wilson MF, Sheagren JN, Hinshaw LB (1990) Impact of encephalopathy on mortality in the sepsis syndrome. Crit Care Med 18:801–806 Iwashyna TJ, Ely EW, Smith DM, Langa KM (2010) Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA 304:1787. https://doi.org/10.1001/jama.2010.1553 du Moulin GC, Paterson D, Hedley-Whyte J, Broitman SA (1985) E. coli peritonitis and bacteremia cause increased blood-brain barrier permeability. Brain Res 340:261–268 Papadopoulos MC, Lamb FJ, Moss RF, Davies DC, Tighe D (1979) Bennett ED (1999) Faecal peritonitis causes oedema and neuronal injury in pig cerebral cortex. Clin Sci Lond Engl 96:461–466 Alexander JJ, Jacob A, Cunningham P, Hensley L, Quigg RJ (2008) TNF is a key mediator of septic encephalopathy acting through its receptor, TNF receptor-1. Neurochem Int 52:447–456. https://doi.org/10.1016/j.neuint.2007.08.006 Taccone FS, Su F, Pierrakos C, He X, James S, Dewitte O, Vincent J-L, Backer DD (2010) Cerebral microcirculation is impaired during sepsis: an experimental study. Crit Care 14:1–10. https://doi.org/10.1186/cc9205 Schramm P, Klein K, Falkenberg L, Berres M, Closhen D, Werhahn KJ, David M, Werner C, Engelhard K (2012) Impaired cerebrovascular autoregulation in patients with severe sepsis and sepsis-associated delirium. Crit Care 16:R181. https://doi.org/10.1186/cc11665 Crippa IA, Subirà C, Vincent J-L, Fernandez RF, Hernandez SC, Cavicchi FZ, Creteur J, Taccone FS (2018) Impaired cerebral autoregulation is associated with brain dysfunction in patients with sepsis. Crit Care 22:327. https://doi.org/10.1186/s13054-018-2258-8 Taccone FS, Castanares-Zapatero D, Peres-Bota D, Vincent J-L, Berre’ J, Melot C (2010) Cerebral autoregulation is influenced by carbon dioxide levels in patients with septic shock. Neurocrit Care 12:35–42 . https://doi.org/10.1007/s12028-009-9289-6 Matta BF, Stow PJ (1996) Sepsis-induced vasoparalysis does not involve the cerebral vasculature: indirect evidence from autoregulation and carbon dioxide reactivity studies. Br J Anaesth 76:790–794 Sharshar T, Annane D, de la Grandmaison GL, Brouland JP, Hopkinson NS, Françoise G (2004) The neuropathology of septic shock. Brain Pathol Zurich Switz 14:21–33 Heming N, Mazeraud A, Verdonk F, Bozza FA, Chrétien F, Sharshar T (2017) Neuroanatomy of sepsis-associated encephalopathy. Crit Care 21:65. https://doi.org/10.1186/s13054-017-1643-z Brown AM, Ransom BR (2007) Astrocyte glycogen and brain energy metabolism. Glia 55:1263–1271. https://doi.org/10.1002/glia.20557 Willie CK, Tzeng Y, Fisher JA, Ainslie PN (2014) Integrative regulation of human brain blood flow. J Physiol 592:841–859. https://doi.org/10.1113/jphysiol.2013.268953 LASSEN NA (1959) Cerebral blood flow and oxygen consumption in man. Physiol Rev 39:183–238 Birch AA, Dirnhuber MJ, Hartley-Davies R, Iannotti F, Neil-Dwyer G (1995) Assessment of autoregulation by means of periodic changes in blood pressure. Stroke 26:834–837 Schmidt B, Klingelhöfer J, Perkes I, Czosnyka M (2009) Cerebral autoregulatory response depends on the direction of change in perfusion pressure. J Neurotrauma 26:651–656. https://doi.org/10.1089/neu.2008.0784 Berg RMG, Plovsing RR, Ronit A, Bailey DM, Holstein-Rathlou N-H, Møller K (2012) Disassociation of static and dynamic cerebral autoregulatory performance in healthy volunteers after lipopolysaccharide infusion and in patients with sepsis. Am J Physiol-Regul Integr Comp Physiol 303:R1127–R1135. https://doi.org/10.1152/ajpregu.00242.2012 Pfister D, Siegemund M, Dell-Kuster S, Smielewski P, Rüegg S, Strebel SP, Marsch SC, Pargger H, Steiner LA (2008) Cerebral perfusion in sepsis-associated delirium. Crit Care 12:1–9. https://doi.org/10.1186/cc6891 Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche J-D, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent J-L, Angus DC (2016) The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315:801. https://doi.org/10.1001/jama.2016.0287 Rosengarten B, Krekel D, Kuhnert S, Schulz R (2012) Early neurovascular uncoupling in the brain during community acquired pneumonia. Crit Care 16:1–8. https://doi.org/10.1186/cc11310 Rosengarten B, Hecht M, Auch D, Ghofrani HA, Schermuly RT, Grimminger F, Kaps M (2006) Microcirculatory dysfunction in the brain precedes changes in evoked potentials in endotoxin-induced sepsis syndrome in rats. Cerebrovasc Dis 23:140–147. https://doi.org/10.1159/000097051 Taccone FS, Su F, Deyne CD, Abdellhai A, Pierrakos C, He X, Donadello K, Dewitte O, Vincent J-L, Backer DD (2014) Sepsis is associated with altered cerebral microcirculation and tissue hypoxia in experimental peritonitis*. Crit Care Med 42:e114. https://doi.org/10.1097/ccm.0b013e3182a641b8 Berman A (2003) Effects of body surface area estimates on predicted energy requirements and heat stress. J Dairy Sci 86:3605–3610 . https://doi.org/10.3168/jds.S0022-0302(03)73966-6 Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, Jaeschke R, Mebazaa A, Pinsky MR, Teboul JL, Vincent JL, Rhodes A (2014) Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med 40:1795–1815. https://doi.org/10.1007/s00134-014-3525-z Zeiler FA, Donnelly J, Cardim D, Menon DK, Smielewski P, Czosnyka M (2018) ICP versus laser Doppler cerebrovascular reactivity indices to assess brain autoregulatory capacity. Neurocrit Care 28:194–202. https://doi.org/10.1007/s12028-017-0472-x Brady KM, Lee JK, Kibler KK, Smielewski P, Czosnyka M, Easley RB, Koehler RC, Shaffner DH (2007) Continuous time-domain analysis of cerebrovascular autoregulation using near-infrared spectroscopy. Stroke 38:2818–2825. https://doi.org/10.1161/STROKEAHA.107.485706 Lam JM, Hsiang JN, Poon WS (1997) Monitoring of autoregulation using laser Doppler flowmetry in patients with head injury. J Neurosurg 86:438–445. https://doi.org/10.3171/jns.1997.86.3.0438 Cerebral Autoregulation Research Network.http://www.car-net.org/content/resources. Accessed 2 June 20. Zhang R, Zuckerman JH, Giller CA, Levine BD (1998) Transfer function analysis of dynamic cerebral autoregulation in humans. Am J Physiol 274:H233–H241. https://doi.org/10.1152/ajpheart.1998.274.1.H233 Panerai RB (2007) Cerebral autoregulation: from models to clinical applications. Cardiovasc Eng 8:42–59. https://doi.org/10.1007/s10558-007-9044-6 Saka (2010) Linear superposition of sensory-evoked and ongoing cortical hemodynamics. Front Neuroenergetics. https://doi.org/10.3389/fnene.2010.00023 Bergel A, Deffieux T, Demené C, Tanter M, Cohen I (2018) Local hippocampal fast gamma rhythms precede brain-wide hyperemic patterns during spontaneous rodent REM sleep. Nat Commun 9:5364. https://doi.org/10.1038/s41467-018-07752-3 Bruyns-Haylett M, Harris S, Boorman L, Zheng Y, Berwick J, Jones M (2013) The resting-state neurovascular coupling relationship: rapid changes in spontaneous neural activity in the somatosensory cortex are associated with haemodynamic fluctuations that resemble stimulus-evoked haemodynamics. Eur J Neurosci 38:2902–2916. https://doi.org/10.1111/ejn.12295 Novak P (1992) Lepicovska V. Slow modulation of EEG: NeuroReport 3:189–192. https://doi.org/10.1097/00001756-199202000-00017 Novak P, Lepicovska V, Dostalek C (1992) Periodic amplitude modulation of EEG. Neurosci Lett 136:213–215 . https://doi.org/10.1016/0304-3940(92)90051-8 Admiraal MM, Gilmore EJ, Van Putten MJAM, Zaveri HP, Hirsch LJ (2017) Gaspard N. Disruption of brain–heart coupling in sepsis: J Clin Neurophysiol 34:413–420. https://doi.org/10.1097/WNP.0000000000000381 Colgin LL, Denninger T, Fyhn M, Hafting T, Bonnevie T, Jensen O, Moser M-B, Moser EI (2009) Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462:353–357. https://doi.org/10.1038/nature08573 Zhang Z, Khatami R (2014) Predominant endothelial vasomotor activity during human sleep: a near-infrared spectroscopy study. Eur J Neurosci 40:3396–3404. https://doi.org/10.1111/ejn.12702 Bosch BM, Bringard A, Ferretti G, Schwartz S, Iglói K (2017) Effect of cerebral vasomotion during physical exercise on associative memory, a near-infrared spectroscopy study. Neurophotonics 4:041404. https://doi.org/10.1117/1.NPh.4.4.041404 Berg RM, Plovsing RR, Bailey DM, Holstein-Rathlou N-H, Møller K (2015) The dynamic cerebral autoregulatory adaptive response to noradrenaline is attenuated during systemic inflammation in humans. Clin Exp Pharmacol Physiol 42:740–746. https://doi.org/10.1111/1440-1681.12421 Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate - a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B: Methodological:289–300. https://doi.org/10.2307/2346101 Giller CA (1990) The frequency-dependent behavior of cerebral autoregulation: Neurosurgery 27:362–368. https://doi.org/10.1227/00006123-199009000-00004 Claassen JA, Abeelen ASM den, Simpson DM, Panerai RB, (CAet) on behalf of the international CARN (2016) Transfer function analysis of dynamic cerebral autoregulation: a white paper from the International Cerebral Autoregulation Research Network. J Cereb Blood Flow Metab 36:665–680 . https://doi.org/10.1177/0271678x15626425 Pedersen M, Brandt CT, Knudsen GM, Østergaard C, Skinhøj P, Skovsted IC, Frimodt-Møller N, Møller K (2008) The effect of S. Pneumoniae bacteremia on cerebral blood flow autoregulation in rats. J Cereb Blood Flow Metab 28:126–134. https://doi.org/10.1038/sj.jcbfm.9600514 Takala J, Booke M, Westphal M, Hinder F, Traber LD, Traber DL (2003) Cerebral blood flow is not altered in sheep with Pseudomonas aeruginosa sepsis treated with norepinephrine or nitric oxide synthase inhibition. Anesth Analg 96:1122–1128, table of contents Rosengarten B, Hecht M, Wolff S, Kaps M (2008) Autoregulative function in the brain in an endotoxic rat shock model. Inflamm Res 57:542–546. https://doi.org/10.1007/s00011-008-7199-2 Smith SM, Padayachee S, Modaresi KB, Smithies MN, Bihari DJ (1998) Cerebral blood flow is proportional to cardiac index in patients with septic shock. J Crit Care 13:104–109 . https://doi.org/10.1016/S0883-9441(98)90013-2 Dawson SL, Blake MJ, Panerai RB, Potter JF (2000) Dynamic but not static cerebral autoregulation is impaired in acute ischaemic stroke. Cerebrovasc Dis 10:126–132. https://doi.org/10.1159/000016041 Strebel S, Lam A, Matta B, Mayberg TS, Aaslid R, Newell DW (1995) Dynamic and static cerebral autoregulation during isoflurane, desflurane, and propofol anesthesia: Anesthesiology 83:66–76. https://doi.org/10.1097/00000542-199507000-00008 Andreasen A, Krabbe K, Krogh-Madsen R, Taudorf S, Pedersen B, Moller K (2008) Human endotoxemia as a model of systemic inflammation. Curr Med Chem 15:1697–1705. https://doi.org/10.2174/092986708784872393 Berg RMG, Plovsing RR, Bailey DM, Holstein-Rathlou N-H, Møller K (2016) Dynamic cerebral autoregulation to induced blood pressure changes in human experimental and clinical sepsis. Clin Physiol Funct Imaging 36:490–496. https://doi.org/10.1111/cpf.12256 Govindan RB, Brady KM, Massaro AN, Perin J, Jennings JM, DuPlessis AJ, Koehler RC, Lee JK (2018) Comparison of frequency- and time-domain autoregulation and vasoreactivity indices in a piglet model of hypoxia-ischemia and hypothermia. Dev Neurosci 40:547–559. https://doi.org/10.1159/000499425 Tan CO (2012) Defining the characteristic relationship between arterial pressure and cerebral flow. J Appl Physiol 113:1194–1200. https://doi.org/10.1152/japplphysiol.00783.2012 Joshi B, Ono M, Brown C, Brady K, Easley RB, Yenokyan G, Gottesman RF (2012) Hogue CW. Predicting the limits of cerebral autoregulation during cardiopulmonary bypass: Anesth Analg 114:503–510. https://doi.org/10.1213/ANE.0b013e31823d292a Hori D, Brown C, Ono M, Rappold T, Sieber F, Gottschalk A, Neufeld KJ, Gottesman R, Adachi H, Hogue CW (2014) Arterial pressure above the upper cerebral autoregulation limit during cardiopulmonary bypass is associated with postoperative delirium. Br J Anaesth 113:1009–1017. https://doi.org/10.1093/bja/aeu319 Aries MJH, Elting JW, De Keyser J, Kremer BPH, Vroomen PCAJ (2010) Cerebral autoregulation in stroke: a review of transcranial Doppler studies. Stroke 41:2697–2704. https://doi.org/10.1161/STROKEAHA.110.594168 Gao Y, Zhang M, Han Q, Li W, Xin Q, Wang Y, Li Z (2015) Cerebral autoregulation in response to posture change in elderly subjects-assessment by wavelet phase coherence analysis of cerebral tissue oxyhemoglobin concentrations and arterial blood pressure signals. Behav Brain Res 278:330–336. https://doi.org/10.1016/j.bbr.2014.10.019 Eames PJ, Blake MJ, Dawson SL, Panerai RB, Potter JF (2002) Dynamic cerebral autoregulation and beat to beat blood pressure control are impaired in acute ischaemic stroke. J Neurol Neurosurg Psychiatry 72:467–472. https://doi.org/10.1136/jnnp.72.4.467 Sonneville R, de Montmollin E, Poujade J, Garrouste-Orgeas M, Souweine B, Darmon M, Mariotte E, Argaud L, Barbier F, Goldgran-Toledano D, Marcotte G, Dumenil A-S, Jamali S, Lacave G, Ruckly S, Mourvillier B, Timsit J-F (2017) Potentially modifiable factors contributing to sepsis-associated encephalopathy. Intensive Care Med 43:1075–1084. https://doi.org/10.1007/s00134-017-4807-z Paulson OB, Strandgaard S, Edvinsson L (1990) Cerebral autoregulation. Cerebrovasc Brain Metab Rev 2:161–192 Steiner LA, Pfister D, Strebel SP, Radolovich D, Smielewski P, Czosnyka M (2009) Near-infrared spectroscopy can monitor dynamic cerebral autoregulation in adults. Neurocrit Care 10:122–128. https://doi.org/10.1007/s12028-008-9140-5 Berg RM, Plovsing RR, Evans KA, Christiansen CB, Bailey DM, Holstein-Rathlou N-H, Møller K (2013) Lipopolysaccharide infusion enhances dynamic cerebral autoregulation without affecting cerebral oxygen vasoreactivity in healthy volunteers. Crit Care 17:R238. https://doi.org/10.1186/cc13062 Terborg C, Schummer W, Albrecht M, Reinhart K, Weiller C, Röther J (2001) Dysfunction of vasomotor reactivity in severe sepsis and septic shock. Intensive Care Med 27:1231–1234 Vachharajani V, Russell JM, Scott KL, Conrad S, Stokes KY, Tallam L, Hall J, Granger DN (2010) Obesity exacerbates sepsis-induced inflammation and microvascular dysfunction in mouse brain. Microcirculation 12:183–194. https://doi.org/10.1080/10739680590904982 Nishioku T, Dohgu S, Takata F, Eto T, Ishikawa N, Kodama KB, Nakagawa S, Yamauchi A, Kataoka Y (2009) Detachment of brain pericytes from the basal lamina is involved in disruption of the blood–brain barrier caused by lipopolysaccharide-induced sepsis in mice. Cell Mol Neurobiol 29:309–316. https://doi.org/10.1007/s10571-008-9322-x Sharshar T, Hopkinson NS, Orlikowski D, Annane D (2004) The brain in sepsis – culprit and victim. Crit Care 9:37. https://doi.org/10.1186/cc2951 Papadopoulos MC, Davies DC, Moss RF, Tighe D (2000) Bennett ED. Pathophysiology of septic encephalopathy: a review: Crit Care Med 28:3019–3024. https://doi.org/10.1097/00003246-200008000-00057 Young GB, Bolton CF, Archibald YM, Austin TW (1992) Wells GA. The electroencephalogram in sepsis-associated encephalopathy: J Clin Neurophysiol 9:145–152. https://doi.org/10.1097/00004691-199201000-00016 van Gool WA, van de Beek D, Eikelenboom P (2010) Systemic infection and delirium: when cytokines and acetylcholine collide. The Lancet 375:773–775 . https://doi.org/10.1016/S0140-6736(09)61158-2 Rutai A, Fejes R, Juhász L, Tallósy SP, Poles MZ, Földesi I, Mészáros AT, Szabó A, Boros M, Kaszaki J (2019) Endothelin A and B receptors: potential targets for microcirculatory-mitochondrial therapy in experimental sepsis. SHOCK 1. https://doi.org/10.1097/SHK.0000000000001414 Naito Y, Yoshioka K, Tanaka K, Tatsumi K, Kimura S, Kasuya Y (2014) Endothelin B receptor-mediated encephalopathic events in mouse sepsis model. Life Sci 118:340–346. https://doi.org/10.1016/j.lfs.2014.03.012 Phillips AA, Chan FH, Zheng M, Krassioukov AV, Ainslie PN (2015) Neurovascular coupling in humans: physiology, methodological advances and clinical implications. J Cereb Blood Flow Metab 0271678X15617954. https://doi.org/10.1177/0271678x15617954 Ono M, Arnaoutakis GJ, Fine DM, Brady K, Easley RB, Zheng Y, Brown C, Katz NM, Grams ME, Hogue CW (2013) Blood pressure excursions below the cerebral autoregulation threshold during cardiac surgery are associated with acute kidney injury*: Crit Care Med 41:464–471. https://doi.org/10.1097/CCM.0b013e31826ab3a1 Aries MJH, Czosnyka M, Budohoski KP, Steiner LA, Lavinio A, Kolias AG, Hutchinson PJ, Brady KM, Menon DK, Pickard JD, Smielewski P (2012) Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury*: Crit Care Med 40:2456–2463. https://doi.org/10.1097/CCM.0b013e3182514eb6 Florence G, Seylaz J (1992) Rapid autoregulation of cerebral blood flow: a laser-Doppler flowmetry study. J Cereb Blood Flow Metab 12:674–680. https://doi.org/10.1038/jcbfm.1992.92 Fabricius M, Lauritzen M (1996) Laser-Doppler evaluation of rat brain microcirculation: comparison with the [ 14 C]-iodoantipyrine method suggests discordance during cerebral blood flow increases. J Cereb Blood Flow Metab 16:156–161. https://doi.org/10.1097/00004647-199601000-00018 Dirnagl U, Kaplan B, Jacewicz M, Pulsinelli W (1989) Continuous measurement of cerebral cortical blood flow by laser—Doppler flowmetry in a rat stroke model. J Cereb Blood Flow Metab 9:589–596. https://doi.org/10.1038/jcbfm.1989.84 Ogawa Y, Iwasaki K, Aoki K, Gokan D, Hirose N, Kato J (2010) Ogawa S. The different effects of midazolam and propofol sedation on dynamic cerebral autoregulation: Anesth Analg 111:1279–1284. https://doi.org/10.1213/ANE.0b013e3181f42fc0 Engelhard K, Werner C, Möllenberg O, Kochs E (2001) S(+)-ketamine/propofol maintain dynamic cerebrovascular autoregulation in humans. Can J Anesth Can Anesth 48:1034–1039. https://doi.org/10.1007/BF03016597 Wu Q, Zhang Y, Zhang Y, Xia C, Lai Q, Dong Z, Kuang W, Yang C, Su D, Li H, Zhong Z (2020) Potential effects of antibiotic-induced gut microbiome alteration on blood–brain barrier permeability compromise in rhesus monkeys. Ann N Y Acad Sci nyas.14312. https://doi.org/10.1111/nyas.14312 Adembri C, Selmi V, Vitali L, Tani A, Margheri M, Loriga B, Carlucci M, Nosi D, Formigli L, De Gaudio AR (2014) Minocycline but not tigecycline is neuroprotective and reduces the neuroinflammatory response induced by the superimposition of sepsis upon traumatic brain injury*: Crit Care Med 42:e570–e582. https://doi.org/10.1097/CCM.0000000000000414 Melzer N, Meuth SG, Torres-Salazar D, Bittner S, Zozulya AL, Weidenfeller C, Kotsiari A, Stangel M, Fahlke C, Wiendl H (2008) A β-lactam antibiotic dampens excitotoxic inflammatory CNS damage in a mouse model of multiple sclerosis. PLoS ONE 3:e3149. https://doi.org/10.1371/journal.pone.0003149 Chow KM, Hui AC, Szeto CC (2005) Neurotoxicity induced by beta-lactam antibiotics: from bench to bedside. Eur J Clin Microbiol Infect Dis 24:649–653. https://doi.org/10.1007/s10096-005-0021-y Kaiser E, West F (2020) Large animal ischemic stroke models: replicating human stroke pathophysiology. Neural Regen Res 15:1377. https://doi.org/10.4103/1673-5374.274324