Ceramic technology. How to characterise ceramic glazes

Trinitat Pradell1, J. Molerà2
1Physics Department, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Building C. Av. Eduard Maristany, 16, 08019, Barcelona, Spain
2Research Group in Mechatronics and Modelling Applied on Technology of Materials (MECAMAT), Engineering Department, Faculty of Sciences and Technology, Universitat de Vic - Universitat Central de Catalunya, Vic, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

Allan JW (1973) Abü’l-Qäsim’s treatise on ceramics, Iran 11, 111–120. https://doi.org/10.2307/4300488

Aloupi-Siotis E (2020) Ceramic technology. How to characterise black Fe-based glass-ceramic coatings. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-020-01134-x

Armstrong P (2020) The earliest glazed ceramics in Constantinople: a regional or international phenomenon?. J Archaeol Sci: Rep 29:102078

Bao Z, Yuan H, Wen R, Chen K (2015) The fast and direct characterization of blue-and white porcelain glaze from Jingdezhen by laser ablation-inductively coupled plasma mass spectrometry. Anal Methods 7:5034–5040

Bezur JA, Casadio F (2012) The analysis of porcelain using handheld and portable X-ray fluorescence spectrometers, chapter 8. In: Handheld XRF. Leuven University Press, Leuven (Belgium), pp 245–312

Beltrán de Heredia Bercero J (2007) Pisa arcaicaivaixellaverda al segle XIII. L’inici de la producció de pisadecoradaenverdimanganès a la ciutat de Barcelona. Quarhis-Quadernsd’ArqueologiaiHistória de Barcelona. ÈpocaII(3): 138–159

Biron I, Beauchoux S (2003) Ion beam analysis of Mosan enamels. Meas Sci Technol 14(9):1564–1578

Bouquillon A, D’alessandro A, Katona I, Zucchiatti A (2005) PIXE analysis of artistic blue glazes and the use of cobalt pigments in ceramics during the Italian renaissance. Int J PIXE 15(1):317–322

Blake H (1980) The archaic Maiolico of north-central ltaly: Montolcino, Assisi and Tolentino. Faenza LXVI(1-6):91–152

Brill RH (1979) Chemical studies of Islamic luster glass in scientific methods in medieval archaeology, chapter XVI. UCLA Centre for Medieval and Renaissance studies. Contributions IV, ed Berger R, pp. 351-377, Berkeley CA (USA)

Caiger Smith A (1991) Lustre pottery. New Amsterdam Books, New York

Carboni S (2002) The early period, chap. 2 in glass from Islamic lands: the Al-Sabah collection. Thames and Hudson, New York (USA), pp 50–137

Chapoulie R, Déléry C, Daniel F, Vendrell-Saz M (2005) Cuerdasecaceramics from al-Andalus, Islamic Spain and Portugal (10th-12th centuries AD): investigation with SEM-EDX and cathodoluminescence. Archaeometry 47(3):419–534

Clark RJH, Curri ML (1998) The identification by Raman microscopy and X-ray diffraction of iron-oxide pigments and of the red pigments found on Italian pottery fragments. J Mol Struct 440(1–3):105–111

Coentro S, Mimoso JM, Lima AM, Silva AS, Pais AN, Muralha VSF (2012) Multi-analytical identification of pigments and pigment mixtures used in 17th century Portuguese azulejos. J Eur Ceram Soc 32:37–48

Coentro S, Alvesc LC, Coll Conesa J, Ferreira T, Mirão J, da Silva RC, Trindade R, Muralha VSF (2020) White on blue: a study on underglaze-decorated ceramic tiles from 15th-16th-century Valencian and Sevillian productions. J Archaeol Sci Rep 30:102254

Colomban P, Treppoz F (2001) Identification and differentiation of ancient and modern European porcelains by Raman macro- and micro-spectroscopy. J Raman Spectrosc 32(2):93–102

Colomban P, Robert I, Roche C, Sagon G, Milande V (2004) Identification des porcelaines “tendres” du 18ème siècle par spectroscopie Raman: Saint-Cloud, Chantilly, Mennecy et Vincennes/Sèvres. Rev d'Archéométrie 28:153–167

Colomban P, Paulsen O (2005) Non-destructive determination of the structure and composition of glazes by Raman spectroscopy. J Amer Ceram Soc 88(2):390–395

Colomban P, Zhang Y, Zhao B (2017a) Non-invasive Raman analyses of Chinese huafalang and related porcelain wares. Searching for evidence for innovative pigment technologies. Ceram Int 43:12079–12088

Colomban P, Ambrosi F, Ngoa A, Lua T, Feng X, Chen S, Choi C (2017b) Comparative analysis of wucai Chinese porcelains using mobile and fixed Raman microspectrometers. Ceram Int 43:14244–14256

Cotte M, Susini J, Dik J, Janssens K (2010) Synchrotron-based X-ray absorption spectroscopy for art conservation: looking back and looking forward. Acc Chem Res 43(6):705–714

De Lapérouse JF (2020) Ceramic musealisation: how ceramics are conserved and the implications for research. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-020-01139-6

de Waal D (2007) Raman analysis of underglaze pigments on porcelain art. J Raman Spectrosc 38(7):956–957

Déléry C (2006) Dynamiqueséconomiques, sociales et culturellesd'al-Andalus à partird'une étude de la céramique de cuerdaseca (secondemoitié du Xe siècle - première moitié du XIIIe siècle), Thése Toulouse 2

Di Febo R, Molera J, Pradell T, Vallcorba O, Melgarejo JC, Capelli C (2017a) Thin-section petrography and SR-microXRD for the identification of micro-crystallites in the brown decorations of ceramic lead glazes. Eur J Mineral 29(5):861–870

Di Febo R, Molera J, Pradell T, Vallcorba O, Capelli C (2017b) Technological implications of neo-formed hematite crystals in ceramic lead glazes. STAR 3(2):366–375

Di Febo R, Molera J, Pradell T, Melgarejo JC, Madrenas J, Vallcorba O (2018) The production of a lead glaze with galena: Thermal transformations in the PbS–SiO2 system. J Amer Ceram Soc 101:2119–2129

Eramo G (2020) Ceramic technology. How to recognize clay processing. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-020-01132-z

Fehérvári G (2000) The Fatimid period in Egypt and North Africa (late tenth to twelfth centuries) in Ceramics of the Islamic World in the Tareq Rajab Museum, Chapter 3. London, New York. pp. 65-77

Freestone IC (2002) The relationship between enamelling on ceramics and on glass in the Islamic world. Archaeometry 44(2):251–255

Galli A, Sibilia E, Martini M (2020) Ceramic chronology by luminescence dating. How and when it is possible to date ceramic artefacts. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-020-01140-z

Giannini R, Freestone IC, Shortland AJ (2017) European cobalt sources identified in the production of Chinese famille rose porcelain. J Archaeol Sci 80:27–36

Giussani B, Monticelli D, Rampazzi L (2009) Role of laser ablation–inductively coupled plasma–mass spectrometry in cultural heritage research: a review. Anal Chim Acta 635:6–21

Gliozzo E (2020a) Ceramics investigation. Research questions and sampling criteria. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-020-01128-9

Gliozzo E (2020b) Ceramic technology. How to reconstruct the firing process. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-020-01133-y

Gualtieri S (2020) Ceramic raw materials. How to establish the technological suitability of a raw material. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-020-01135-w

Guo YY (1987) Raw materials for making porcelain and the characteristics of porcelain wares in north and South China in ancient times. Archaeometry 29:3–19

Gratuze B, Blet-Lemarquand J, Barrandon JN (2001) Mass spectrometry with laser sampling: a new tool to characterize archaeological materials. J Radioanal Nucl Chem 247:645–656

Hein A, Kilikoglou V (2020) Ceramic raw materials. How to recognize them and locate the supply basins. Chem Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-020-01129-8

Henderson J, Wood N, Tregear M (1989) The technology of sixteenth and seventeenth Chinese cloisonné enamels. Archaeometry 31(2):133–146

Henderson J, Ma H, Cui J, Ma R, Xiao H (2020) Isotopic investigations of Chinese ceramics. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-020-01138-7

Henshaw CM (2010) Early Islamic ceramics and glazes of Akhsiket, Uzbekistan. PhD. UCL

Hill DV, Speakman RJ, Glascock MD (2004) Chemical and mineralogical characterization of Sasanian and early Islamic glazed ceramics from the DehLuran plain, southwestern Iran. Archaeometry 46(4):585–605

Holakooei P, de Lapérouse LF, Caròc F, Röhrs S, Franke U, Müller-Wiener M, Reiche I (2019) Non-invasive scientific studies on the provenance and technology of early Islamic ceramics from Afrasiyab and Nishapur. J Archaeol Sci Rep 24:759–772

Hou J, Pradell T, Li Y, Miao J (2018) Jun ware glazes: chemistry, nanostructure and optical properties. J Eur Ceram Soc 38:4290–4302

Ionescu C, Hoeck V (2020) Ceramic technology. How to investigate surface finishing. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-020-01144-9

Kleinmann B (1986) History and development of early Islamic pottery glazes, in Olin JS and Blackman MJ (eds) Proceedings of the 24th archaeometry symposium 73–84, Washington DC: Smithsonian Institution Press

Kim JY, No HG, Jeon AY, Kim US, Pee JH, Cho WS, Kim KJ, Kim CM, Kim CS (2011) Mössbauer spectroscopic and chromaticity analysis on colorative mechanism of celadon glaze. Ceram Int 37:3389–3395

Kingery WD, Vandiver PB (1983) Song dynasty Jun (Chün) ware glazes. Am Ceram Soc Bull 62(11):1269–1279 then 1279-1282

Kingery WD, Vandiver PB, Huang IW, Chiang YM (1983) Liquid-liquid immiscibility and phase separation in the quaternary systems K2OAl2O3CaOSiO2 and Na2OAl2O3CaOSiO2. J Non-Crystal Sol 54(1-2):163-171. https://doi.org/10.1016/0022-3093(83)90090-X

Kingery WD, Vandiver PB (1986a) Ceramic masterpieces: art, structure and technology. Free Press, New York

Kingery WD, Vandiver PB (1986b) The eighteenth-century change in technology and style from the famille-verte palette to the famille-rose palette. In: Technology and style: Proceedings of a Symposium on Ceramic History and Archaeology at the 87th annual meeting of the American Ceramic Society, 6 May 1985, Cincinnati, pp. 363-381

Kühnel E (1934) Die AbbasidischenLüsterfayencen, Ars Islamica I

Lenting C, Plümper O, Kilburn M, Guagliardo P, Klinkenberg M, Geisler T (2018) Towards a unifying mechanistic model for silicate glass corrosion. NPJ Mater Degrad 2(1):28

Li B (2010) Red-and-green enamelled ceramics from the Jin and Yuan dynasties: recent discoveries, cultural significance and associations with Jingdezhen porcelains. Orient Ceram Soc Newsletter 18:11–14

Li W, Li J, Deng Z, Wu J, Guo J (2005) Study on Ru ware glaze of the Northern Song dynasty: one of the earliest crystalline-phase separated glazes in ancient China. Ceram Int 31:487–494

Ma H, Henderson J, Evans J (2014) The exploration of Sr isotopic analysis applied to Chinese glazes: part one. J Archaeol Sci 50:551–558

Maggetti M, D’Albis A (2017) Phase and compositional analysis of a Sèvres soft paste porcelain plate from 1781, with a review of early porcelain techniques. Eur J Mineral 29:347–367

Maritan L (2020) Ceramic abandonment. How to recognise post-depositional transformations. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-020-01141-y

Mason RB, Tite MS (1994) The beginnings of Islamic stonepaste technology. Archaeometry. 36:77–91

Mason RB (1997) Early mediaeval Iraqi lustre-painted and associated wares: typology in a multidisciplinary study. Iraq, LIX, 1: 47

Mason RB, Tite MS, Paynter S, Salter C (2001) Advances in polychrome ceramics in the Islamic world of the 12th century AD. Archaeometry. 43(2):191–209

Matin M (2018) On the origins of tin-opacified ceramic glazes: new evidence from early Islamic Egypt, the Levant, Mesopotamia, Iran, and Central Asia. J Archaeol Sci 97:42–66

McCarthy BE (1996) Microstructural and compositional studies of the technology and durability of ceramic glazes from Nippur, Iraq, ca. 250 B.C. - 1450 A.D., Ph.D. Thesis. Department of Conservation. The Johns Hopkins University, Baltimore, Maryland.ProQuest Dissertations Publishing, 1997. UMI number 9718995.

Melcher M, Schreiner M (2001) Evaluation procedure for leaching studies on naturally weathered potash-lime-silica glasses with medieval composition by scanning electron microscopy. J Non-Crystall Sol 351(14–15):1210–1225

Miao J, Yang B, Mu D (2010) Identification and differentiation of opaque Chinese overglaze yellow enamels by Raman spectroscopy and supporting techniques. Archaeometry. 52(1):146–155

Molera J, Pradell T, Martinez-Manent S, Vendrell-Saz M (1993) The growth of sanidine crystals in the lead glazes of Hispano-Moresque pottery. Appl Clay Sci 7:483–491

Molera J, Pradell T, Vendrell-Saz M (1998) The colours of Ca-rich ceramic pastes: origin and characterization. Appl Clay Sci 13:187–202

Molera J, Pradell T, Salvado N, Vendrell-Saz M (1999) Evidence of tin oxide recrystallization in opacified lead glazes. J Amer Ceram Soc 82:2871–2875

Molera J, Pradell T, Salvado N, Vendrell-Saz M (2001) Interactions between clay bodies and lead glazes. J Am Ceram Soc 84(5):1120–1128

Molera J, Bayés C, Roura P, Crespo D, Pradell T (2007) Key parameters in the production of medieval lustre colors and shines. J Am Ceram Soc 90(7):2245–2254

Molera J, Pradell T, Salvado N, Vendrell-Saz M (2009) Lead frits in Islamic and Hispano-Moresque glazed productions. In: Shortland AJ, Freestone I, Rehren T (eds) From mine to microscope. Advances in the study of ancient materials, vol Chapter 1. Oxbow Books, pp 1–11

Molera J, Coll J, Labrador A, Pradell T (2013) Manganese brown decorations in 10th to 18th century Spanish tin glazed ceramics. Appl Clay Sci 82:86–90

Molera J, Martínez Ferreras V, Fusaro A, GurtEsparraguera JM, Gaudenzi M, Pidaev SR, Pradell T (2020) Islamic glazed wares from ancient Termez (southern Uzbekistan) Raw materials and techniques. J Archaeol Sci Rep 29:102169

Molina G, Tite MS, Molera J, Climent-Font A, Pradell T (2014) Technology of production of polychrome lustre. J Eur Ceram Soc 34:2563–2574

Montana G (2020) Ceramic raw materials. How to recognize them and locate the supply basins. Mineral Petrogr Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-020-01130-1

Moreno MJ (1987) La cerámica de cuerda seca peninsular: orígen y dispersión. Actas del II Congreso de Arqueologia Medieval Española Madrid pp 33–42

Northedge A (2001) Thoughts on the introduction of polychrome glazed pottery in the Middle East. In: Villeneuve E; Watson PM (eds), La céramique Byzantine et proto-islamiqueenSyrie-Jordanie (IVe–VIIIe siècles apr. JC), Beirut (IFAPO), 207–214

O’Kane B (2011) Tiles of many hues. In, Bloom JM and Blair S (eds) And diverse are their hues: color in Islamic art and culture. Chapter 6. Appendix by Tite MS and Salter C (Yale University Press)

Pace M, Bianco Prevot A, Mirti P, VencoRicciard R (2008) The technology of production of Sasanian glazed pottery from VehArdasir (Central Iraq). Archaeometry. 50:591–605

Padeletti G, Fermo P (2004) Production of gold and ruby-red lustres in Gubbio (Umbria, Italy) during the Renaissance period. Appl Phys A Mater Sci Process 79(2):241–224

Palamara E, Zacharias N, Xanthopoulou M, KasztovszkyZs KI, Palles P, Kamitsos EI (2016) Technology issues of Byzantine glazed pottery from Corinth, Greece. Microchem J 129:137–150

Papageorgiou I (2020) Ceramic investigation. How to perform statistical analyses. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-020-01142-x

Paynter S (2001) The development of vitreous materials in the ancient Near East and Egypt, PhD thesis, RLAHA, Oxford University

Paynter S, Okyar F, Wolf S, Tite MS (2004) The production technology of Iznik pottery-a reassessment. Archaeometry 46(3):421–437

Pérez-Arantegui J, Soto M, Castillo JR (1999) Examination of the “cuerdaseca” decoration technique on Islamic ceramics from al-Andalus. J Archaeol Sci 26:935–941

Pérez-Arantegui J, Molera J, Larrea A, Pradell T, Vendrell-Saz M et al (2001) Lustre pottery from the thirteenth century to the sixteenth century: a nanostructured thin metallic film. J Am Ceram Soc 84(2):442–446

Porter V, Watson O (1987) Part II: tell Minis' wares. Syrian and Iran, three studies in medieval ceramics. In: Oxford Studies in Islamic Art, vol IV. Oxford University Press, Oxford (UK), pp 175–248

Pradell T, Molera J, Roque J, Smith AD, Crespo D, Pantos E, Vendrell M (2005) Ionic-exchange mechanism in the formation of medieval lustre decorations. J Amer Ceram Soc 88(5):1281–1289

Pradell T, Molera J, Salvadó N, Labrador A (2010) Synchrotron radiation micro-XRD in the study of glaze technology. Appl Phys A Mater Sci Process 99:407–417

Pradell T, Pavlov R, Gutiérrez PC, Climent-Font A, Molera J (2012) Composition, nanostructure and optical properties of silver and silver-copper lustres. J Appl Physiol 112(5):054307

Pradell T, Molera J, Molina G, Pla J, Labrador A (2013) The use of micro-XRD for the study of glaze color decorations. Appl Phys A Mater Sci Process 111:121–127

Pradell T (2016) Lustre and nanostructures—ancient technologies revisited. In: Dillmann P, Bellot Gurlet L, Nenner I (eds) Nanoscience and cultural heritage, vol chap 1. Atlantis Pres. Springer series in Physical Chemistry http://www.springer.com/us/book/9789462391970

Pradell T, Fernandes R, Molina G, Smith AD, Molera J, Climent-Font A (2018) Technology of production of Syrian lustre (11th to 13th century). J Eur Ceram Soc 38(7):2716–2727

Patitucci Uggeri S (1985) La protomaiolica del Mediterraneoorientale in rapporto ai centri di produzioneItaliani. CorsiRav 32:337–402

Quinn PS (2013) Ceramic petrography. The interpretation of archaeological pottery & related artefacts in thin section. Archaeopress, Oxford, p 251

Reedy CL (2016) Petrographic and image analysis of thin sections of classic wares of the Song dynasty. Proceedings of the international symposium on science and technology of five great wares of the Song dynasty. N Shi and J Miao ed. Sciencep. (Beijing) pp. 381-390

Rehren TH, Yin M (2012) Melt formation in lime-rich proto-porcelain glazes. J Archaeol Sci 39:2969–2983

REMAI (2012) Proceedings of the 1st international conference of the European network of museums of Islamic art, Museo de la Alhambra, V&A and Musée du Louvre

Rodziewicz M (1983) Egyptian glazed pottery of the eighth to ninth centuries. Bull Soc ArchéolCopte 25:73–75

Rogers P (1992) Ash glazes. London/Philadelphia, A & C Black and University of Pennsylvania Press

Rosser-Owen M (2010) Islamic arts from Spain. V&A Publishing, London

Salinas E, Pradell T (2018) The transition from lead transparent to tin-opacified glaze productions in the western Islamic lands: al-Andalus, c. 875–929 CE. J Archaeol Sci 94:1–11

Salinas E, Pradell T, Molera J (2019a) Glaze production at an early Islamic workshop in al-Andalus. Archaeol Anthropol Sci 11(5):2201–2213

Salinas E, Pradell T, Matin M, Tite MS (2019b) From tin- to antimony-based yellow opacifiers in the early Islamic Egyptian glazes: regional influences and ruling dynasties. J Archaeol Sci Rep 26:101923

Scanlon GT (1998) Slip-painted early Lead-glazed wares from Fustat: a dilemma of nomenclature. In: Gayraud, RP (ed.) Colloque international d’ArchéologieIslamique 3–7 février 1993, IFAO, Cairo, 21–53

Sciau Ph, Sanchez C, Gliozzo E (2020) Ceramic technology. How to characterise terra sigillata ware. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-020-01137-8

Shelby JE (2005) Introduction to glass science and technology. Second edition. RSC. The Royal Society of Chemistry. Cambridge (UK)ISBN: 0-85404-639-9

Soustiel J (1985) La céramiqueIslamique. Office du libre, Fribourg

Taxel I (2014) Luxury and common wares: socio-economic aspects of the distribution of glazed pottery in early Islamic Palestine. Levant. 46(1):118–139

Thér R (2020) Ceramic technology. How to reconstruct and describe pottery-forming practices. Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-020-01131-0

Tichane R (1978) Those Celadon blues. Institute for Glaze Research, New York State

Tite MS, Freestone IC, Bimson M (1983) Egyptian faience: an investigation of the methods of production. Archaeometry. 25(1):17–27

Tite MS, Freestone IC, Mason R, Molera J, Vendrell-Saz M, Wood N (1998) Lead glazes in antiquity-methods of production and reasons for use. Archaeometry. 40(2):241–260

Tite MS, Pradell T, Shortland A (2008) Discovery, production and use of tin-based opacifiers in glasses, enamels and glazes from the Late Iron Age onwards: a reassessment. Archaeometry. 50:67–84

Tite MS (2009) The production technology of Italian maiolica: a reassessment. J Archaeol Sci 36:2065–2080

Tite MS, Watson O, Pradell T, Matin M, Molina G, Domoney K, Bouquillon A (2015) Revisiting the beginnings of tin-opacified Islamic glazes. J Archaeol Sci 57:80–91

Tite MS, Shortland AJ, Schibille N, Degryse P (2016) New data on the soda flux used in the production of Iznik glazes and byzantine glazes. Archaeometry. 58(1):57–66

Ting C, Lichtenberger A, Raja R (2019) The technology and production of glazed ceramics from middle Islamic Jerash, Jordan. Archaeometry. 21(6):1296–1312

Van Pevenage J, Lauwers D, Herremans D, Verhaeven E, Vekemans B, De Clercq W, Vincze L, Moens L, Vandenabeele P (2014) A combined spectroscopic study on Chinese porcelain containing ruan-caicolours. Anal Methods 6:387–394

Vandiver PB (1982) Technological change in Egyptian faience. In: Olin JS, Franklin AD (eds) Archaeological ceramics. Smithsonian Institution Press, Washington DC, pp 167–179

Vandiver PB (1983) Appendix A: the manufacture of faience. In Ancient Egyptian Faience : An analytical survey of Egyptian Faience from Predynastic to Roman times (Karczmarczyk A and Hedges REM). Warminster: Aris and Phillips, pp. A1-A137ISBN 10: 0856682217ISBN 13: 9780856682216

Vandiver PB (2016) Variability of Song dynasty green glaze technology using microstructure, microcomposition and thermal history to compare Yaozhou, Jun, Ru, Longquan, Guan and Korean Koryo dynasty materials and practices. Proceedings of the international symposium on science and technology of five great wares of the Song dynasty. N Shi and J Miao ed. Sciencep. (Beijing) pp. 391-432

Vendrell-Saz M, Molera J, Tite M (2000) Optical properties of tin-opacified glazes. Archaeometry. 42:325–340

Viti C, Borgia I, Brunetti B, Sgamellotti A, Mellini M (2003) Microtexture and microchemistry of glaze and pigments in Italian renaissance pottery from Gubbio and Deruta. J Cult Herit 4(3):199–210

Vogel W (1992) Glass chemistry. Springer, Berlin

Vroom J (2006) Some Byzantine pottery finds from Laman-Kalehöyuk: a first observation. AAS XV:163–169

Waksman Y, Capelli C, Pradell T, Molera J (2014) The ways of the lustre: looking for the Tunisian connection in craft and science: international perspectives on archaeological ceramics, ed. Martinón-Torres M. UCL Qatar series in archaeology and cultural heritage, 1 Doha, Qatar, Bloomsbury Qatar Foundation, pp. 109-116

Waksman SY, Burlot J, Böhlendorf-Arslan B, Vroom J (2017) Moulded ware production in the early Turkish/Beylik period in western Anatolia: a case study from Ephesus and Miletus. J Archaeol Sci Rep 16:665–675

Waksman SY, Bouquillon A, Cantin N, Katona I (2008) Approche archéométrique des premières "Byzantine Glazed White Ware" et de productions glaçurées romaines et romaines tardives. Rei Cretariae Romanae Fautorum Acta 40: 531-536

Walton MS (2004) A materials chemistry investigation of archaeological lead glazes, PhD thesis, Oxford University

Walton MS, Tite MS (2010) Production technology of Roman lead-glazed pottery and its continuance into late antiquity. Archaeometry. 52(5):733–759

Watson O (1985) Persian lustre ware. Faber and Faber, London

Watson O (2014) Revisiting Samarra: the rise of Islamic glazed pottery. BeiträgezurIslamischen Kunst und Archäologie 4:123–142

Wen R, Zhang Y, Wang D, Wang L (2017) The compositional characterization and painting technique of Chinese red and white porcelain by EDXRF and SR-mXRF mapping analysis. Anal Methods 9:4380–4386

Weyl WA (1951, reprint 2016) Coloured glasses, Society of Glass Technology, Sheffield

Whitcomb D (1989) Coptic glazed ceramics from the excavations at Aqaba. Jordan J Am Res Centre Egypt 26:167–182

Wood S, Blachere JR (1978) Corrosion of lead glasses in acid media: I, leaching kinetics. J Am Ceram Soc 61(7–8):87–292

Wood N (1999) Chinese glazes: their origins, chemistry and recreation. A&C Black, London

Wood N (2013) Some mysteries of Jun ware manufacture. In: Junyao. Eskenazi, London, pp 17–28

Wood N, Li H (2015) A study of the techniques used to make Laohudong Guan ware in China in the southern Song dynasty. Archaeometry. 57(4):617–635

Yianyi G (1987) Raw materials for making porcelain and the characteristics of porcelain wares in north and south China in ancient times. Archaeometry. 29(1):3–19

Yin M, Rehren T, Zheng JM (2011) The earliest high-fired glazed ceramics in China: the composition of the proto-porcelain from Zhejiang during the Shang and Zhou periods (c. 1700-221 BC). J Archaeol Sci 38:2352–2365

Zhu T, Ding X, Kusimba CM, Feng Z (2015) Using laser ablation inductively coupled plasma mass spectroscopy (LA-ICP-MS) to determine the provenance of the cobalt pigment of Qinghua porcelain from Jingdezhen in Yuan dynasty of China (1271-1368AD). Ceram Int 41:9878–9884