Centrotemporal sharp wave EEG trait in rolandic epilepsy maps to Elongator Protein Complex 4 (ELP4)
Tóm tắt
Từ khóa
Tài liệu tham khảo
Shinnar S, O’Dell C, Berg AT : Distribution of epilepsy syndromes in a cohort of children prospectively monitored from the time of their first unprovoked seizure. Epilepsia 1999; 40: 1378–1383.
Beaussart M : Benign epilepsy of children with Rolandic (centro-temporal) paroxysmal foci: a clinical entity. Study of 221 cases. Epilepsia 1972; 13: 795–811.
Clarke T, Strug LJ, Murphy PL et al: High risk of reading disability and speech sound disorder in rolandic epilepsy families: case–control study. Epilepsia 2007; 48: 2258–2265.
Kavros PM, Clarke T, Strug LJ, Halperin JM, Dorta NJ, Pal DK : Attention impairment in rolandic epilepsy: systematic review. Epilepsia 2008; 49: 1570–1580.
Boxerman J, Hawash K, Bali B, Clarke T, Rogg J, Pal DK : Is Rolandic epilepsy associated with abnormalities on cranial MRI? Epilepsy Res 2007; 75: 180–185.
Eeg-Olofsson O, Petersen I, Sellden U : The development of the electroencephalogram in normal children from the age of 1 through 15 years. Paroxysmal activity. Neuropadiatrie 1971; 2: 375–404.
Echenne B, Cheminal R, Rivier F, Negre C, Touchon J, Billiard M : Epileptic electroencephalographic abnormalities and developmental dysphasias: a study of 32 patients. Brain Dev 1992; 14: 216–225.
Holtmann M, Becker K, Kentner-Figura B, Schmidt MH : Increased frequency of rolandic spikes in ADHD children. Epilepsia 2003; 44: 1241–1244.
Scabar A, Devescovi R, Blason L, Bravar L, Carrozzi M : Comorbidity of DCD and SLI: significance of epileptiform activity during sleep. Child Care Health Dev 2006; 32: 733–739.
Doose H, Neubauer B, Carlsson G : Children with benign focal sharp waves in the EEG – developmental disorders and epilepsy. Neuropediatrics 1996; 27: 227–241.
Heijbel J, Blom S, Rasmuson M : Benign epilepsy of childhood with centrotemporal EEG foci: a genetic study. Epilepsia 1975; 16: 285–293.
Scheffer IE, Jones L, Pozzebon M, Howell RA, Saling MM, Berkovic SF : Autosomal dominant rolandic epilepsy and speech dyspraxia: a new syndrome with anticipation. Ann Neurol 1995; 38: 633–642.
Guerrini R, Bonanni P, Nardocci N et al: Autosomal recessive Rolandic epilepsy with paroxysmal exercise-induced dystonia and writer's cramp: delineation of the syndrome and gene mapping to chromosome 16p12–11.2. Ann Neurol 1999; 45: 344–352.
Roll P, Rudolf G, Pereira S et al: SRPX2 mutations in disorders of language cortex and cognition. Hum Mol Genet 2006; 15: 1195–1207.
Kugler SL, Bali B, Lieberman P et al: An autosomal dominant genetically heterogeneous variant of rolandic epilepsy. Epilepsia 2008; 49: 1086–1090.
Bali B, Kull L, Strug L et al: Autosomal dominant inheritance of centrotemporal sharp waves in rolandic epilepsy families. Epilepsia 2007; 48: 2266–2272.
Neubauer BA, Fiedler B, Himmelein B et al: Centrotemporal spikes in families with rolandic epilepsy: linkage to chromosome 15q14. Neurology 1998; 51: 1608–1612.
Royall RM : Statistical Evidence: A Likelihood Paradigm. London: Chapman and Hall, 1997.
Blume JD : Tutorial in biostatistics: likelihood methods for measuring statistical evidence. Stat Med 2002; 21: 2563–2599.
Strug LJ, Hodge SE : An alternative foundation for the planning and evaluation of linkage analysis. I. Decoupling ‘error probabilities’ from ‘measures of evidence’. Hum Hered 2006; 61: 166–188.
Strug LJ, Rohde CA, Corey PN : An introduction to evidential sample size calculations. Am Stat 2007; 61: 207–212.
Commission on classification and terminology of the international league against epilepsy: proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia 1989; 30: 389–399.
Hodge SE, Abreu P, Greenberg DA : Magnitude of type I error when single-locus linkage analysis is maximized over models: a simulation study. Am J Hum Genet 1997; 60: 217–227.
Abreu PC, Hodge SE, Greenberg DA : Quantification of type i error probabilities for heterogeneity LOD scores. Genet Epidemiol 2002; 22: 159–169.
Pal DK, Durner M, Greenberg DA : Effect of misspecification of gene frequency on the two-point lod score. Am J Hum Genet 2001; 9: 855–859.
Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES : Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 1996; 58: 1347–1363.
Daw EW, Thompson EA, Wijsman EM : Bias in multipoint linkage analysis arising from map misspecification. Genet Epidemiol 2000; 19: 366–380.
Barrett JC, Fry B, Maller J, Daly MJ : Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.
Strug LJ, Hodge SE : An alternative foundation for the planning and evaluation of linkage analysis. II. Implications for multiple test adjustments. Hum Hered 2006; 61: 200–209.
Benjamini Y, Hochberg Y : Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 1995; 57: 289–300.
Laird NM, Horvath S, Xu X : Implementing a unified approach to family-based tests of association. Genet Epidemiol 2000; 19 (Suppl 1): S36–S42.
Kong A, Gudbjartsson DF, Sainz J et al: A high-resolution recombination map of the human genome. Nat Genet 2002; 31: 241–247.
Vieland VJ, Hodge SE : Review of statistical evidence: a likelihood paradigm by Royall, R. Am J Hum Genet 1998; 63: 283–289.
Clayton D, Chapman J, Cooper J : Use of unphased multilocus genotype data in indirect association studies. Genet Epidemiol 2004; 27: 415–428.
Otero G, Fellows J, Li Y et al: Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation. Mol Cell 1999; 3: 109–118.
Svejstrup JQ : Elongator complex: how many roles does it play? Curr Opin Cell Biol 2007; 19: 331–336.
Krogan NJ, Greenblatt JF : Characterization of a six-subunit holo–elongator complex required for the regulated expression of a group of genes in Saccharomyces cerevisiae. Mol Cell Biol 2001; 21: 8203–8212.
Esberg A, Huang B, Johansson MJ, Bystrom AS : Elevated levels of two tRNA species bypass the requirement for elongator complex in transcription and exocytosis. Mol Cell 2006; 24: 139–148.
Close P, Hawkes N, Cornez I et al: Transcription impairment and cell migration defects in elongator-depleted cells: implication for familial dysautonomia. Mol Cell 2006; 22: 521–531.
Niedermeyer E, McKusick VA, Brunt P, Mahloudji M : The EEG in familial dysautonomia (Riley–Day syndrome). Electroencephalogr Clin Neurophysiol 1967; 22: 473–475.
Anderson SL, Coli R, Daly IW et al: Familial dysautonomia is caused by mutations of the IKAP gene. Am J Hum Genet 2001; 68: 753–758.
Slaugenhaupt SA, Blumenfeld A, Gill SP et al: Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am J Hum Genet 2001; 68: 598–605.
Mezey E, Parmalee A, Szalayova I et al: Of splice and men: what does the distribution of IKAP mRNA in the rat tell us about the pathogenesis of familial dysautonomia? Brain Res 2003; 983: 209–214.
Griffin C, Kleinjan DA, Doe B, van Heyningen V : New 3′ elements control Pax6 expression in the developing pretectum, neural retina and olfactory region. Mech Dev 2002; 112: 89–100.