Central Nervous System Prophylaxis and Treatment in Acute Leukemias
Tóm tắt
Improvements in systemic therapy in the treatment of acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) have improved patient outcomes and reduced the incidence of CNS relapse. However, management of patients with CNS disease remains challenging, and relapses in the CNS can be difficult to salvage. In addition to treatment with CNS-penetrant systemic therapy (high-dose methotrexate and cytarabine), intrathecal prophylaxis is indicated in all patients with ALL, however is not uniformly administered in patients with AML without high-risk features. There is a limited role for radiation treatment in CNS prophylaxis; however, radiation should be considered for consolidative treatment in patients with CNS disease, or as an option for palliation of symptoms. Re-examining the role of established treatment paradigms and investigating the role of radiation as bridging therapy in the era of cellular therapy, particularly in chemotherapy refractory patients, is warranted.
Tài liệu tham khảo
Lazarus HM, Richards SM, Chopra R, Litzow MR, Burnett AK, Wiernik PH, et al. Central nervous system involvement in adult acute lymphoblastic leukemia at diagnosis: results from the international ALL trial MRC UKALL XII/ECOG E2993. Blood [Internet]. 2006 Jul 15 [cited 2022 Sep 5];108(2):465–72. Available from: https://ashpublications.org/blood/article/108/2/465/109893/Central-nervous-system-involvement-in-adult-acute
Cortes J, O’Brien SM, Pierce S, Keating MJ, Freireich EJ, Kantarjian HM. The value of high-dose systemic chemotherapy and intrathecal therapy for central nervous system prophylaxis in different risk groups of adult acute lymphoblastic leukemia. Blood. 1995;86(6):2091–7.
Reman O, Pigneux A, Huguet F, Vey N, Delannoy A, Fegueux N, et al. Central nervous system involvement in adult acute lymphoblastic leukemia at diagnosis and/or at first relapse: Results from the GET-LALA group. Leuk Res. 2008;32(11):1741–50.
Ganzel C, Lee JW, Fernandez HF, Paietta EM, Luger SM, Lazarus HM, et al. CNS involvement in AML at diagnosis is rare and does not affect response or survival: data from 11 ECOG-ACRIN trials. Blood Adv [Internet]. 2021 Nov 23 [cited 2022 Sep 5];5(22):4560–8. Available from: https://ashpublications.org/bloodadvances/article/5/22/4560/477132/CNS-involvement-in-AML-at-diagnosis-is-rare-and
Cheng CL, Li CC, Hou HA, Fang WQ, Chang CH, Lin CT, et al. Risk factors and clinical outcomes of acute myeloid leukaemia with central nervous system involvement in adults. BMC Cancer [Internet]. 2015 May 2 [cited 2022 Sep 5];15(1):1–10. Available from: https://doi.org/10.1186/s12885-015-1376-9.
Rozovski U, Ohanian M, Ravandi F, Garcia-Manero G, Faderl S, Pierce S, et al. Leukemia & Lymphoma Incidence of and risk factors for involvement of the central nervous system in acute myeloid leukemia Incidence of and risk factors for involvement of the central nervous system in acute myeloid leukemia. Leuk Lymphoma [Internet]. 2015;56(5):1392–7. Available from: https://doi.org/10.3109/10428194.2014.953148.
Omura G, Moffitt S, Vogler W, Salter M. Combination chemotherapy of adult acute lymphoblastic leukemia with randomized central nervous system prophylaxis. Blood. 1980;55(2):199–204.
Law IP, Blom J. Adult acute leukemia frequency of central nervous system involvement in long term survivors. Cancer. 1977;40(3):1304–6.
Kantarjian H, Thomas D, O’Brien S, Cortes J, Giles F, Jeha S, et al. Long-term follow-up results of hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone (Hyper-CVAD), a dose-intensive regimen, in adult acute lymphocytic leukemia. Cancer [Internet]. 2004 Dec 15 [cited 2022 Sep 24];101(12):2788–801. Available from: https://doi.org/10.1002/cncr.20668.
Surapaneni UR, Cortes JE, Thomas D, O’Brien S, Giles FJ, Koller C, et al. Central nervous system relapse in adults with acute lymphoblastic leukemia. Cancer [Internet]. 2002 Feb 1 [cited 2022 Sep 17];94(3):773–9. Available from: https://doi.org/10.1002/cncr.10265.
Lenk L, Alsadeq A, Schewe DM. Involvement of the central nervous system in acute lymphoblastic leukemia: opinions on molecular mechanisms and clinical implications based on recent data. Cancer Metastasis Rev 2020 391 [Internet]. 2020 Jan 22 [cited 2022 Sep 26];39(1):173–87. Available from: https://doi.org/10.1007/s10555-020-09848-z.
Bassan R, Hoelzer D. Modern therapy of acute lymphoblastic leukemia. J Clin Oncol. 2011;29(5):532–43.
Bürger B, Zimmermann M, Mann G, Kühl J, Löning L, Riehm H, et al. Diagnostic cerebrospinal fluid examination in children with acute lymphoblastic leukemia: Significance of low leukocyte counts with blasts or traumatic lumbar puncture. J Clin Oncol. 2003;21(2):184–8.
Barranco-Lampón G, Rozen-Fuller E, Olarte-Carrilo I, Martínez-Tovar A, León-González G, Castellanos-Sinco H, et al. Association between traumatic lumbar puncture and the risk of central nervous system relapse in adults with acute lymphoblastic leukaemia. Rev Médica Del Hosp Gen México. 2015;78(3):124–8.
Martínez-Cuadrón D, Montesinos P, Pérez-sirvent M, Avaria A, Cordón L, Rodríguez-Veiga R, et al. Central nervous system involvement at first relapse in patients with acute myeloid leukemia. Haematologica [Internet]. 2011 Sep [cited 2022 Oct 1];96(9):1375. Available from: /pmc/articles/PMC3166110/.
Shihadeh F, Reed V, Faderl S, Medeiros LJ, Mazloom A, Hadziahmetovic M, et al. Cytogenetic profile of patients with acute myeloid leukemia and central nervous system disease. Cancer [Internet]. 2012 Jan 1 [cited 2022 Sep 12];118(1):112–7. Available from: https://doi.org/10.1002/cncr.26253.
Jabbour E, Guastad Daver N, Short NJ, Huang X, Chen HC, Maiti A, et al. Factors associated with risk of central nervous system relapse in patients with non-core binding factor acute myeloid leukemia. Am J Hematol [Internet]. 2017 Sep 1 [cited 2022 Sep 12];92(9):924. Available from: /pmc/articles/PMC5901967/
Peterson BA, Brunning RD, Bloomfield CD, Hurd DD, Gau JA, Peng GT, et al. Central nervous system involvement in acute nonlymphocytic leukemia: a prospective study of adults in remission. Am J Med. 1987;83(3):464–70.
Arber DA, Borowitz MJ, Cessna M, Etzell J, Foucar K, Hasserjian RP, et al. Initial diagnostic workup of acute leukemia: guideline From the College of American Pathologists and the American Society of Hematology. Arch Pathol Lab Med [Internet]. 2017 Oct 1 [cited 2022 Sep 18];141(10):1342–93. Available from: https://pubmed.ncbi.nlm.nih.gov/28225303/
Frishman-Levy L, Izraeli S. Advances in understanding the pathogenesis of CNS acute lymphoblastic leukaemia and potential for therapy. Br J Haematol [Internet]. 2017 Jan 1 [cited 2022 Sep 24];176(2):157–67. Available from: https://doi.org/10.1111/bjh.14411.
Chamberlain MC, Glantz M, Groves MD, Wilson WH. Diagnostic tools for neoplastic meningitis: detecting disease, identifying patient risk, and determining benefit of treatment. Semin Oncol. 2009;36(SUPPL. 2):S35–45.
Glantz MJ, Cole BF, Glantz LK, Cobb J, Mills P, Lekos A, et al. Cerebrospinal fluid cytology in patients with cancer: minimizing false- negative results. Cancer. 1998;82(4):733–9.
Dass J, Dayama A, Mishra PC, Mahapatra M, Seth T, Tyagi S, et al. Higher rate of central nervous system involvement by flow cytometry than morphology in acute lymphoblastic leukemia. Int J Lab Hematol [Internet]. 2017 Oct 1 [cited 2022 Sep 12];39(5):546–51. Available from: https://pubmed.ncbi.nlm.nih.gov/28649769/
Principe MI Del, Buzzatti E, Piciocchi A, Forghieri F, Bonifacio M, Lessi F, et al. Clinical significance of occult central nervous system disease in adult acute lymphoblastic leukemia. A multicenter report from the Campus ALL Network. Haematologica [Internet]. 2021 Jan 1 [cited 2022 Sep 12];106(1):39–45. Available from: https://haematologica.org/article/view/9587
Mitri Z, Siddiqui MT, El Rassi F, Holden JT, Heffner LT, Langston A, et al. Sensitivity and specificity of cerebrospinal fluid flow cytometry for the diagnosis of leukemic meningitis in acute lymphoblastic leukemia/lymphoma. Leuk Lymphoma [Internet]. 2014 [cited 2022 Sep 12];55(7):1498–500. Available from: https://doi.org/10.3109/10428194.2013.852667.
Kantarjian HM, Walters RS, Smith TL, Keating MJ, Barlogie B, McCredie KB, et al. Identification of risk groups for development of central nervous system leukemia in adults with acute lymphocytic leukemia. Blood. 1988;72(5):1784–9.
Matloub Y, Lindemulder S, Gaynon PS, Sather H, La M, Broxson E, et al. Intrathecal triple therapy decreases central nervous system relapse but fails to improve event-free survival when compared with intrathecal methotrexate: results of the Children’s Cancer Group (CCG) 1952 study for standard-risk acute lymphoblastic leukemia, reported by the Children’s Oncology Group. Blood [Internet]. 2006 Aug 15 [cited 2022 Sep 17];108(4):1165–73. Available from: https://ashpublications.org/blood/article/108/4/1165/22394/Intrathecal-triple-therapy-decreases-central
Thomas DA, O’Brien S, Rytting M, Ravandi F, Jabbour E, Ferrajoli A, et al. Incidence of central nervous system (CNS) relapse in de novo adult acute lymphoblastic leukemia (ALL). Blood [Internet]. 2014 Dec 6 [cited 2022 Oct 1];124(21):940–940. Available from: https://ashpublications.org/blood/article/124/21/940/101934/Incidence-of-Central-Nervous-System-CNS-Relapse-in
Rausch CR, Jabbour EJ, Kantarjian HM, Kadia TM. Optimizing the use of the hyperCVAD regimen: Clinical vignettes and practical management. Cancer [Internet]. 2020 Mar 15 [cited 2022 Oct 1];126(6):1152–60. Available from: https://doi.org/10.1002/cncr.32606. This paper guides use of hyper-CVAD regimens in ALL with particular emphasis on CNS directed therapy.
Paul S, Sasaki K, Savoy JM, Dipippo A, Jammal N, Marx K, et al. Title: 12 versus 8 prophylactic intrathecal (IT) chemotherapy administration decrease incidence of central nervous system (CNS) relapse in patients (pts) with newly diagnosed Philadelphia (Ph)-positive acute lymphocytic leukemia (ALL). Blood [Internet]. 2019 Nov 13 [cited 2022 Oct 1];134(Supplement_1):3810–3810. Available from: https://ashpublications.org/blood/article/134/Supplement_1/3810/424194/Title-12-Versus-8-Prophylactic-Intrathecal-IT
Thomas DA, Faderl S, O’Brien S, Bueso-Ramos C, Cortes J, Garcia-Manero G, et al. Chemoimmunotherapy with hyper-CVAD plus rituximab for the treatment of adult Burkitt and Burkitt-type lymphoma or acute lymphoblastic leukemia. Cancer [Internet]. 2006 Apr 1 [cited 2022 Oct 1];106(7):1569–80. Available from: https://doi.org/10.1002/cncr.21776.
Döhner H, Estey EH, Amadori S, Appelbaum FR, Büchner T, Burnett AK, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood [Internet]. 2010 Jan 21 [cited 2022 Oct 1];115(3):453–74. Available from: https://ashpublications.org/blood/article/115/3/453/27145/Diagnosis-and-management-of-acute-myeloid-leukemia
Reid JH, Perissinotti AJ, Benitez L, Bixby DL, Burke P, Pettit K, et al. Impact of prophylactic intrathecal chemotherapy on CNS relapse rates in AML patients presenting with hyperleukocytosis. https://doi.org/101080/1042819420191691199 [Internet]. 2019 Mar 20 [cited 2022 Oct 1];61(4):862–8. Available from: https://doi.org/10.1080/10428194.2019.1691199.
Vora A, Andreano A, Pui CH, Hunger SP, Schrappe M, Moericke A, et al. Influence of cranial radiotherapy on outcome in children with acute lymphoblastic leukemia treated with contemporary therapy. J Clin Oncol. 2016;34(9):919–26.
Pui C-H, Campana D, Pei D, Bowman WP, Sandlund JT, Kaste SC, et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med [Internet]. 2009 Jun 25 [cited 2022 Sep 24];360(26):2730–41. Available from: https://doi.org/10.1056/nejmoa0900386.
Stock W, Johnson JL, Stone RM, Kolitz JE, Powell BL, Wetzler M, et al. Dose intensification of daunorubicin and cytarabine during treatment of adult acute lymphoblastic leukemia. Cancer [Internet]. 2013 Jan 1 [cited 2022 Sep 24];119(1):90–8. Available from: https://doi.org/10.1002/cncr.27617.
Sirvent N, Suciu S, De Moerloose B, Ferster A, Mazingue F, Plat G, et al. CNS-3 status remains an independent adverse prognosis factor in children with acute lymphoblastic leukemia (ALL) treated without cranial irradiation: Results of EORTC Children Leukemia Group study 58951. Arch Pédiatrie. 2021;28(5):411–6.
Mayadev JS, Douglas JG, Storer BE, Appelbaum FR, Storb R. Impact of cranial irradiation added to intrathecal conditioning in hematopoietic cell transplantation in adult acute myeloid leukemia with central nervous system involvement. Int J Radiat Oncol. 2011;80(1):193–8.
Hamdi A, Mawad R, Bassett R, di Stasi A, Ferro R, Afrough A, et al. Central nervous system relapse in adults with acute lymphoblastic leukemia after allogeneic hematopoietic stemcell transplantation. Biol Blood Marrow Transplant [Internet]. 2014 Nov 1 [cited 2021 Oct 26];20(11):1767–71. Available from: https://pubmed.ncbi.nlm.nih.gov/25017763/
Oshima K, Kanda Y, Yamashita T, Takahashi S, Mori T, Nakaseko C, et al. Central nervous system relapse of leukemia after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2008;14(10):1100–7.
Patel N, RIch BJ, Patel S, Watts JM, Benveniste R, Abramowitz M, et al. Emergent Radiotherapy for Leukemia-Induced Cranial Neuropathies Refractory to Intrathecal Therapy. Cureus [Internet]. 2021 May 24 [cited 2022 Oct 3];13(5). Available from: https://pubmed.ncbi.nlm.nih.gov/34178531/
Walker G V., Shihadeh F, Kantarjian H, Allen P, Rondon G, Kebriaei P, et al. Comprehensive craniospinal radiation for controlling central nervous system leukemia. Int J Radiat Oncol Biol Phys [Internet]. 2014 Dec 1 [cited 2021 Oct 26];90(5):1119–25. Available from: https://pubmed.ncbi.nlm.nih.gov/25539370/
Joseph PJ, Reyes MR. Dorsal column myelopathy following intrathecal chemotherapy for acute lymphoblastic leukemia. https://doi.org/101179/2045772312Y0000000081 [Internet]. 2014 Jan [cited 2022 Sep 17];37(1):107–13. Available from: https://doi.org/10.1179/2045772312Y.0000000081.
Teh HS, Fadilah SAW, Leong CF. Transverse myelopathy following intrathecal administration of chemotherapy. Singapore Med J [Internet]. 2007 [cited 2022 Sep 25];48(2). Available from: https://hctm.ukm.my/terapisel/wp-content/uploads/2021/09/Transverse_myelopathy_following_intrathecal_admini.pdf
Lapucci C, Capello E, Romano N, Guolo F, Mavilio N, Roccatagliata L. Rapidly ascending necrotizing myelopathy with widespread brain white matter involvement following intrathecal methotrexate and cytosine arabinoside treatment in an adult with T cell acute lymphoblastic leukemia. Neurol Sci [Internet]. 2018 Sep 1 [cited 2022 Sep 25];39(9):1637–9. Available from: https://doi.org/10.1007/s10072-018-3435-x.
Tariq H, Gilbert A, Sharkey FE. Intrathecal Methotrexate-induced necrotizing myelopathy: a case report and review of histologic features. Clin Med Insights Pathol [Internet]. 2018 Nov 1 [cited 2022 Sep 25];11. Available from: https://doi.org/10.1177/1179555718809071?rfr_dat=cr_pub++0pubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org.
Lai R, Abrey LE, Rosenblum MK, DeAngelis LM. Treatment-induced leukoencephalopathy in primary CNS lymphoma: a clinical and autopsy study. Neurology [Internet]. 2004 Feb 10;62(3):451–456. Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=14872029&retmode=ref&cmd=prlinks
Pinnix CC, Chi L, Jabbour EJ, Milgrom SA, Smith GL, Daver N, et al. Dorsal column myelopathy after intrathecal chemotherapy for leukemia. Am J Hematol [Internet]. 2017 Feb 1 [cited 2021 Oct 26];92(2):155–60. Available from: https://pubmed.ncbi.nlm.nih.gov/27874212/
Bhojwani D, Sabin ND, Pei D, Yang JJ, Khan RB, Panetta JC, et al. Methotrexate-induced neurotoxicity and leukoencephalopathy in childhood acute lymphoblastic leukemia. J Clin Oncol. 2014;32(9):949–59.
Watterson J, Toogood I, Nieder M, Morse M, Frierdich S, Lee Y, et al. Excessive spinal cord toxicity from intensive central nervous system -directed therapies. Cancer. 1994;74(11):3034–41.
Pinnix CC, Yahalom J, Specht L, Dabaja BS. Radiation in central nervous system leukemia: Guidelines From the International Lymphoma Radiation Oncology Group. Int J Radiat Oncol Biol Phys [Internet]. 2018 Sep 1 [cited 2021 Oct 26];102(1):53–8. Available from: http://www.redjournal.org/article/S0360301618309209/fulltext. This paper highlights consensus guidelines for the use of radiotherapy in the treatment of CNS leukemia, with particular emphasis on the timing of radiation relative to systemic or intrathecal chemotherapy and selection of RT fields based on the clinical scenario.
Remsen LG, McCormick CI, Sexton G, Pearse HD, Garcia R, Mass M, et al. Long-term toxicity and neuropathology associated with the sequencing of cranial irradiation and enhanced chemotherapy delivery. Neurosurgery. 1997;40(5):1034–42.
Rowland JH, Glidewell OJ, Sibley RF, Holland JC, Tull R, Berman A, et al. Effects of different forms of central nervous system prophylaxis on neuropsychologic function in chilhood leukemia. J Clin Oncol. 1984;2(12):1327–35.
DeAngelis LM, Seiferheld W, Schold SC, Fisher B, Schultz CJ, 93-10 RTOGS. Combination chemotherapy and radiotherapy for primary central nervous system lymphoma: Radiation Therapy Oncology Group Study 93-10. J Clin Oncol [Internet]. 2002 Dec 15;20(24):4643–8. Available from: https://doi.org/10.1200/JCO.2002.11.013.
Kim N, Lim DH, Yoon SE, Kim SJ, Kim WS. Role of 23.4 Gy upfront whole-brain radiation therapy following high-dose methotrexate for primary central nervous system lymphoma: a comparative analysis of whole-brain radiation therapy versus no radiation therapy. J Neurooncol [Internet]. 2021 Sep 1 [cited 2022 Oct 3];154(2):207–17. Available from: https://doi.org/10.1007/s11060-021-03815-6.
Kantarjian H, Stein A, Gökbuget N, Fielding AK, Schuh AC, Ribera J-M, et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med [Internet]. 2017 Mar 2 [cited 2022 Oct 6];376(9):836–47. Available from: https://doi.org/10.1056/NEJMoa1609783.
Gökbuget N, Dombret H, Bonifacio M, Reichle A, Graux C, Faul C, et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood [Internet]. 2018 Apr 5 [cited 2022 Oct 6];131(14):1522–31. Available from: https://ashpublications.org/blood/article/131/14/1522/36655/Blinatumomab-for-minimal-residual-disease-in
Zimm S, Collins JM, Miser J, Chatterji D, Poplack DG. Cytosine arabinoside cerebrospinal fluid kinetics. Clin Pharmacol Ther [Internet]. 1984 Jun 1 [cited 2022 Oct 1];35(6):826–30. Available from: https://doi.org/10.1038/clpt.1984.120.
Bleyer WA, Dedrick RL. Clinical pharmacology of intrathecal methotrexate. I. Pharmacokinetics in nontoxic patients after lumbar injection. Cancer Treat Rep [Internet]. 1977 Jul 1 [cited 2022 Oct 1];61(4):703–8. Available from: https://europepmc.org/article/med/577895
Cohen SR, Herndon RM, McKhann GM. Radioimmunoassay of myelin basic protein in spinal fluid. https://doi.org/10.1056/NEJM197612232952604 [Internet]. 2009 Nov 16 [cited 2022 Oct 6];295(26):1455–7. Available from: https://doi.org/10.1056/NEJM197612232952604.
Gangji D, Reaman GH, Cohen SR, Bleyer WA, Poplack DG. Leukoencephalopathy and elevated levels of myelin basic protein in the cerebrospinal fluid of patients with acute lymphoblastic leukemia. https://doi.org/10.1056/NEJM198007033030106 [Internet]. 2009 Jun 5 [cited 2022 Oct 6];303(1):19–21. Available from: https://doi.org/10.1056/NEJM198007033030106.
Brown PD, Pugh S, Laack NN, Wefel JS, Khuntia D, Meyers C, et al. Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial. Neuro Oncol [Internet]. 2013 Oct [cited 2022 Oct 6];15(10):1429. Available from: /pmc/articles/PMC3779047/
Ajithkumar T, Horan G, Padovani L, Thorp N, Timmermann B, Alapetite C, et al. SIOPE – Brain tumor group consensus guideline on craniospinal target volume delineation for high-precision radiotherapy. Radiother Oncol. 2018;128(2):192–7.
Hiniker SM, Agarwal R, Modlin LA, Gray CC, Harris JP, Million L, et al. Survival and neurocognitive outcomes after cranial or craniospinal irradiation plus total-body irradiation before stem cell transplantation in pediatric leukemia patients with central nervous system involvement. Int J Radiat Oncol. 2014;89(1):67–74.
Hideghéty K, Cserháti A, Nagy Z, Varga Z, Fodor E, Vincze V, et al. A prospective study of supine versus prone positioning and whole-body thermoplastic mask fixation for craniospinal radiotherapy in adult patients. Radiother Oncol [Internet]. 2012 Feb [cited 2022 Sep 25];102(2):214–8. Available from: https://pubmed.ncbi.nlm.nih.gov/21862161/
Gunther JR, Rahman AR, Dong W, Yehia ZA, Kebriaei P, Rondon G, et al. Craniospinal irradiation prior to stem cell transplant for hematologic malignancies with CNS involvement: Effectiveness and toxicity after photon or proton treatment. Pract Radiat Oncol [Internet]. 2017 Nov 1 [cited 2021 Oct 24];7(6):e401–8. Available from: https://pubmed.ncbi.nlm.nih.gov/28666906/
Barney CL, Brown AP, Grosshans DR, McAleer MF, De Groot JF, Puduvalli V, et al. Technique, outcomes, and acute toxicities in adults treated with proton beam craniospinal irradiation. Neuro Oncol [Internet]. 2014 Feb 1 [cited 2022 Sep 25];16(2):303–9. Available from: https://academic.oup.com/neuro-oncology/article/16/2/303/1084925
Uemura S, Demizu Y, Hasegawa D, Fujikawa T, Inoue S, Nishimura A, et al. The comparison of acute toxicities associated with craniospinal irradiation between photon beam therapy and proton beam therapy in children with brain tumors. Cancer Med [Internet]. 2022 Mar 1 [cited 2022 Sep 25];11(6):1502–10. Available from: https://doi.org/10.1002/cam4.4553.
Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–48.
Shah BD, Ghobadi A, Oluwole OO, Logan AC, Boissel N, Cassaday RD, et al. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study. Lancet. 2021;398(10299):491–502.
Qi Y, Zhao M, Hu Y, Wang Y, Li P, Cao J, et al. Efficacy and safety of CD19-specific CAR T cell–based therapy in B-cell acute lymphoblastic leukemia patients with CNSL. Blood [Internet]. 2022 Jun 9 [cited 2022 Sep 26];139(23):3376–86. Available from: https://ashpublications.org/blood/article/139/23/3376/484499/Efficacy-and-safety-of-CD19-specific-CAR-T-cell
Leahy AB, Newman H, Li Y, Liu H, Myers R, DiNofia A, et al. CD19-targeted chimeric antigen receptor T-cell therapy for CNS relapsed or refractory acute lymphocytic leukaemia: a post-hoc analysis of pooled data from five clinical trials. Lancet Haematol. 2021;8(10):e711–22.
Zhang X, Lu XA, Yang J, Zhang G, Li J, Song L, et al. Efficacy and safety of anti-CD19 CAR T-cell therapy in 110 patients with B-cell acute lymphoblastic leukemia with high-risk features. Blood Adv [Internet]. 2020 May 26 [cited 2022 Sep 26];4(10):2325–38. Available from: https://ashpublications.org/bloodadvances/article/4/10/2325/456149/Efficacy-and-safety-of-anti-CD19-CAR-T-cell
He X, Xiao X, Li Q, Jiang Y, Cao Y, Sun R, et al. Anti-CD19 CAR-T as a feasible and safe treatment against central nervous system leukemia after intrathecal chemotherapy in adults with relapsed or refractory B-ALL. Leuk 2019 338 [Internet]. 2019 Mar 7 [cited 2022 Sep 26];33(8):2102–4. Available from: https://www.nature.com/articles/s41375-019-0437-5
Jacoby E, Bielorai B, Avigdor A, Itzhaki O, Hutt D, Nussboim V, et al. Locally produced CD19 CAR T cells leading to clinical remissions in medullary and extramedullary relapsed acute lymphoblastic leukemia. Am J Hematol [Internet]. 2018 Dec 1 [cited 2022 Sep 26];93(12):1485–92. Available from: https://doi.org/10.1002/ajh.25274.