Cellular senescence and autophagy of myoepithelial cells are involved in the progression of in situ areas of carcinoma ex-pleomorphic adenoma to invasive carcinoma. An in vitro model

Carolina Amália Barcellos Silva1, Elizabeth Ferreira Martinez1, Ana Paula Dias Demasi1, Albina Altemani2, Jeruza P. Bossonaro1, Ney Soares de Araújo1, Vera Cavalcanti de Araújo1
1Department of Oral Pathology, São Leopoldo Mandic Institute and Research Center, Rua José Rocha Junqueira 13, Ponte Preta, 13045-755, Campinas, Brazil
2Department of Pathology, State University of Campinas, Campinas, Brazil

Tóm tắt

Từ khóa


Tài liệu tham khảo

Altemani A, Martins MT, Freitas L, Soares F, Araújo NS, Araújo VC (2005) Carcinoma ex pleomorphic adenoma (CXAP): immunoprofile of the cells involved in carcinomatous progression. Histophatology 46:635–641

Araújo VC, Altemani A, Furuse C, Martins MT, Araújo NS (2006) Immunoprofile of reatctive salivary myoepithelial cells in intraductal áreas of carcinoma ex-pleomorphic adenoma. Oral Oncol 42:1011–1116

Barsky SH, Karlin NJ (2005) Myoepithelial cells: autocrine and paracrine suppressors of breast cancer progression. J Mammary Gland Biol Neoplasia 10:249–260

Bartlett JM, Nofech-Moses S, Rakovitch E (2014) Ductal carcinoma in situ of the breast: can biomarkers improve current management? Clin Chem 60:60–67

Campisi J (2011) Cellular senescence: putting the paradoxes in perspective. Curr Opin Genet Dev 21:107–112

Campisi J, Fagagna FDA (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740

Campisi J, Andersen JK, Kapahi P, Melov S (2011) Cellular senescence: a link between cancer and age-related degenerative disease? Semin Cancer Biol 21:354–359

Cao Y, Klionsky DJ (2007) Physiological functions of Atg6/Beclin-1: a unique autophagy-related protein. Cell Res 17:839–849

Capparelli C, Chiavarina B, Whitaker-Menezes D, Pestell TG, Pestell RG, Hulit J et al (2012a) CDK inibitors (p16/p19/p21) induce senescence and autophagy in cancer-associated fibroblasts, “fueling” tumor growth via paracrine interactions, wihout an increase in neo-angiogenesis. Cell Cycle 11:3599–3610

Capparelli C, Guido C, Whitaker-Menezes D, Bonuccelli G, Balliet R, Pestell TG et al (2012b) Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis via glycolysis and ketone production. Cell Cycle 11:2285–2302

Capparelli C, Whitaker-Menezes D, Guido C, Balliet R, Pestell TG, Howell A et al (2012c) CTGF drives autophagy, glycolysis and senescence in cancer-associated fibroblasts via HIF1 activation, metabolically promoting tumor growth. Cell Cycle 11:2272–2284

Chen J, Goligorsky MS (2006) Premature senescence of endothelial cells: methusaleh’s dilemma. Am J Physiol Heart Circ Physiol 290:729–739

Chen N, Karantza-Wadsworth V (2009) Role and regulation of autophagy in cancer. Biochim Biophys Acta 1793:1516–1523

Chen J, Xavier S, Moskowitz-Kassai E, Chen R, Lu CY, Sanduski K et al (2012) Cathepsin cleavage of sirtuin 1 in endothelial progenitor cells mediates stress-induced premature senescence. Am J Pathol 180:973–983

Cheung CHA, Cheng LT, Chang KY, Chen HH, Chang JY (2011) Investigations of surviving: the past, present and future. Front Biosci 16:952–961

Cowell CF, Weigelt B, Sakr RA, Ng CK, Hicks J, King TA, Reis-Filho JS (2013) Progression from ductal carcinoma in situ to invasive breast cancer: revisited. Mol Oncol 7:859–869

Dimri GP (2005) What has senescence got to do with cancer? Cancer Cell 7:505–512

Dulic V (2013) Senescence regulation by mTOR. Methods Mol Biol 965:15–35

Evan GI, Fagagna FDA (2009) Cellular senescence: hot or what? Curr Opin Genet Dev 19:25–31

Jones JL, Shaw JA, Pringle JH, Walker RA (2003) Primary breast myoepithelial cells exert an invasion-supressor effect on breast cancer cells via paracrine down-regulation of MMP expression in fibroblasts and tumour cells. J Pathol 201:562–572

Kondo Y, Kanzawa T, Sawaya R, Kondo S (2005) The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5:726–733

Larsson LG (2011) Oncogene and tumor suppressor gene-mediated suppression of cellular senescence. Semin Cancer Biol 21:367–376

Levine B (2007) Autophagy and cancer. Cell Biol 446:745–747

Martinez EF, Demasi AP, Miguita L, Altemani A, Araújo NS, Araújo VC (2010) FGF-2 is overexpressed in myoepithelial cells of carcinoma ex-pleomorphic adenoma in situ structures. Oncol Rep 24:155–160

Martinez EF, Montaldi PT, Araújo NS, Altemani A, Araújo VC (2012) A proposal of an in vitro model which mimics in situ áreas of carcinoma. J Cell Comun Signal 6:107–109

Martinez EF, Napimoga MH, Montalli VA, de Araújo NS, de Araújo VC (2013) In vitro cytokine expression in in situ-like areas of malignant neoplasia. Arch Oral Biol 58:552–557

Metwaly H, Maruyama S, Yamazaki M, Tsuneki M, Abé T, Jen KY et al (2012) Parenchymal-stromal switching for extracellular matrix production on invasion of oral squamous cell carcinoma. Hum Pathol 43:1973–1981

Miguita L, Martinez EF, Araújo NS, Araújo VC (2010) FGF-2, TGFß-1, PDGF-A and respective receptors expression in pleomorphic adenoma myoepithelial cells: an in vivo and in vitro study. J Appl Oral Sci 18:83–91

Miracco C, Meng GC, Franchi A, Luzi P, Cosci E, Mourmouras V et al (2010) Beclin-1 and LC3 autophagic gene expression. In cutaneous melanocytic lesions. Hum Pathol 41:503–512

Narita M, Young AR, Narita M (2009) Autophagy facilitates oncogene-induced senescence. Autophagy 5:1046–1047

Nguyen M, Lee MC, Wang JL, Tomlinson JS, Shao ZM, Alpaugh ML et al (2000) The human myoepithelial cells displays a multifaceted anti-angiogenic phenotype. Oncogene 19:3449–3459

Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B et al (2012) Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif 45:487–498

Pattingre S, Espert L, Biard-Piechaczyk M, Codogno P (2008) Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie 90:313–323

Placzek WJ, Wei J, Kitada S, Zhai D, Reed JC, Pellecchia M (2010) A survey of the anti-apoptotic Bcl-2 subfamily expression in cancer types provides a platform to predict the efficacy of Bcl-2 antagonists in cancer therapy. Cell Death Dis 1:e40

Plati J, Bucur O, Khosravi-Far R (2011) Apoptotic cell signaling in câncer progression and therapy. Integr Biol 3:279–296

Roberg K, Jonsson AC, Grénman R, Norberg-Spaak L (2007) Radiotherapy response in oral squamous carcinoma cell lines: evaluation of apoptotic proteins as prognostic factors. Head Neck 29:325–334

Roy S, Debnath J (2010) Autophagy and tumorigenesis. Semin Immunopathol 32:383–396

Shao ZM, Nguyen M, Alpaugh ML, O’Connell JT, Barsky SH (1998) The human myoepithelial cell exerts antiproliferative effects on breast carcinoma cells characterized by p21 induction, G2/M arrest, and apoptosis. Exp Cell Res 241:394–403

Shay JW, Roninson IB (2004) Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene 23:2919–2933

Silva AD, Silva CAB, Montalli VA, Martinez EF, Araújo VC, Furuse C (2012) In vitro evaluation of the suppressor potential of conditioned medium from benign myoepithelial cells from pleomorphic adenoma in malignant cell invasion. J Oral Pathol Med 41:610–614

Sternlicht MD, Barsky SH (1997) The myoepithelial defense: a host defense against câncer. Med Hypotheses 48:37–46

Sternlicht MD, Kedeshian P, Shao ZM, Safarians S, Barsky SH (1997) The human myoepithelial cells is a natural tumor suppressor. Clin Cancer Res 3:1949–1958

Townson JL, Naumov GN, Chambers AF (2003) The role of apoptosis in tumor progression and metastasis. Curr Mol Med 3:631–642

Ulukaya E, Acilan C, Yilmaz Y (2011) Apoptosis: why and how does it occur in biology? Cell Biochem Funct 29:468–480

Wong RSY (2011) Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res 30:87–100