Cơ chế phân tử và tế bào của metformin: một cái nhìn tổng quan

Clinical Science - Tập 122 Số 6 - Trang 253-270 - 2012
Benoı̂t Viollet1,2,3, Bruno Guigas4, Nieves Sanz Garcia1,2,3, Jocelyne Leclerc1,2,3, Marc Foretz1,2,3, Fabrizio Andréelli1,5,2,3
1CNRS, UMR8104, Paris, France
2INSERM, U1016, Institut Cochin, Paris, France
3Université Paris Descartes, Sorbonne Paris Cité, Paris, France
4Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
5Department of Diabetology, Pitié-Salpêtrière Hospital (AP-HP), Université Pierre et Marie Curie-Paris 6, Paris, France

Tóm tắt

Trong hơn 50 năm qua, đã có nhiều nỗ lực nhằm hiểu rõ hơn về các cơ chế phân tử và tế bào của metformin, một hoạt chất chống tăng đường huyết mạnh, hiện đang được khuyến cáo là liệu pháp điều trị đường uống hàng đầu cho bệnh tiểu đường loại 2 (T2D). Tác dụng chính của thuốc này từ nhóm biguanide là giảm đáng kể sản xuất glucose ở gan, chủ yếu thông qua việc ức chế tạm thời nhẹ nhàng chuỗi hô hấp ty thể phức hợp I. Ngoài ra, sự giảm năng lượng ở gan dẫn đến việc kích hoạt AMPK (protein kinase gắn với AMP), một cảm biến trao đổi chất tế bào, cung cấp một cơ chế được chấp nhận rộng rãi cho tác động của metformin lên quá trình gluconeogenesis ở gan. Việc chứng minh rằng phức hợp hô hấp ty thể I, nhưng không phải AMPK, là mục tiêu chính của metformin đã được củng cố gần đây thông qua việc cho thấy hiệu ứng chuyển hóa của thuốc được bảo tồn trong chuột thiếu AMPK đặc hiệu ở gan. Ngoài tác động đến chuyển hóa glucose, metformin đã được báo cáo là khôi phục chức năng buồng trứng ở hội chứng ovarium đa nang (PCOS), giảm gan nhiễm mỡ và giảm các biến chứng vi mạch và đại mạch liên quan đến T2D. Việc sử dụng metformin cũng đã được đề xuất gần đây như một phương pháp điều trị hỗ trợ cho ung thư hoặc tiểu đường thai kỳ và cho việc phòng ngừa trong các quần thể tiền tiểu đường. Những lĩnh vực điều trị mới nổi này của metformin sẽ được xem xét cùng với những phát hiện gần đây từ các nghiên cứu dược di truyền liên kết các biến thể di truyền với phản ứng thuốc, một bước tiến hứa hẹn hướng tới y học cá thể hóa trong điều trị T2D.

Từ khóa


Tài liệu tham khảo

Adler, 2009, Newer agents for blood glucose control in type 2 diabetes: summary of NICE guidance, BMJ, 338, b1668, 10.1136/bmj.b1668

Nathan, 2009, Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes, Diabetes Care, 32, 193, 10.2337/dc08-9025

UK Prospective Diabetes Study (UKPDS) Group, 1998, Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34), Lancet, 352, 854, 10.1016/S0140-6736(98)07037-8

Selvin, 2008, Cardiovascular outcomes in trials of oral diabetes medications: a systematic review, Arch. Intern. Med., 168, 2070, 10.1001/archinte.168.19.2070

Lamanna, 2011, Effect of metformin on cardiovascular events and mortality: a meta-analysis of randomized clinical trials, Diabetes Obes. Metab., 13, 221, 10.1111/j.1463-1326.2010.01349.x

Gunton, 2003, Metformin rapidly increases insulin receptor activation in human liver and signals preferentially through insulin-receptor substrate-2, J. Clin. Endocrinol. Metab., 88, 1323, 10.1210/jc.2002-021394

Maida, 2011, Metformin regulates the incretin receptor axis via a pathway dependent on peroxisome proliferator-activated receptor-α in mice, Diabetologia, 54, 339, 10.1007/s00125-010-1937-z

Cusi, 1996, Metabolic effects of metformin on glucose and lactate metabolism in noninsulin-dependent diabetes mellitus, J. Clin. Endocrinol. Metab., 81, 4059

Hundal, 2000, Mechanism by which metformin reduces glucose production in type 2 diabetes, Diabetes, 49, 2063, 10.2337/diabetes.49.12.2063

Natali, 2006, Effects of metformin and thiazolidinediones on suppression of hepatic glucose production and stimulation of glucose uptake in type 2 diabetes: a systematic review, Diabetologia, 49, 434, 10.1007/s00125-006-0141-7

Argaud, 1993, Metformin decreases gluconeogenesis by enhancing the pyruvate kinase flux in isolated rat hepatocytes, Eur. J. Biochem., 213, 1341, 10.1111/j.1432-1033.1993.tb17886.x

Large, 1999, Modifications of citric acid cycle activity and gluconeogenesis in streptozotocininduced diabetes and effects of metformin, Diabetes, 48, 1251, 10.2337/diabetes.48.6.1251

Mithieux, 2002, Intrahepatic mechanisms underlying the effect of metformin in decreasing basal glucose production in rats fed a high-fat diet, Diabetes, 51, 139, 10.2337/diabetes.51.1.139

Radziuk, 1997, Effects of metformin on lactate uptake and gluconeogenesis in the perfused rat liver, Diabetes, 46, 1406, 10.2337/diab.46.9.1406

Shu, 2007, Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action, J. Clin. Invest., 117, 1422, 10.1172/JCI30558

Wilcock, 1994, Accumulation of metformin by tissues of the normal and diabetic mouse, Xenobiotica, 24, 49, 10.3109/00498259409043220

Zhou, 2001, Role of AMP-activated protein kinase in mechanism of metformin action, J. Clin. Invest., 108, 1167, 10.1172/JCI13505

Viollet, 2009, AMPactivated protein kinase in the regulation of hepatic energy metabolism: from physiology to therapeutic perspectives, Acta Physiol., 196, 81, 10.1111/j.1748-1716.2009.01970.x

Oakhill, 2011, AMPK is a direct adenylate charge-regulated protein kinase, Science, 332, 1433, 10.1126/science.1200094

Xiao, 2011, Structure of mammalian AMPK and its regulation by ADP, Nature, 472, 230, 10.1038/nature09932

Hardie, 2006, Neither LKB1 nor AMPK are the direct targets of metformin, Gastroenterology, 131, 973, 10.1053/j.gastro.2006.07.032

El-Mir, 2000, Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I, J. Biol. Chem., 275, 223, 10.1074/jbc.275.1.223

Owen, 2000, Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain, Biochem. J., 348, 607, 10.1042/bj3480607

Brunmair, 2004, Thiazolidinediones, like metformin, inhibit respiratory complex I: a common mechanism contributing to their antidiabetic actions?, Diabetes, 53, 1052, 10.2337/diabetes.53.4.1052

Detaille, 2005, Metformin prevents high-glucose-induced endothelial cell death through a mitochondrial permeability transition-dependent process, Diabetes, 54, 2179, 10.2337/diabetes.54.7.2179

Hinke, 2007, Methyl succinate antagonises biguanide-induced AMPKactivation and death of pancreatic β-cells through restoration of mitochondrial electron transfer, Br. J. Pharmacol., 150, 1031, 10.1038/sj.bjp.0707189

El-Mir, 2008, Neuroprotective role of antidiabetic drug metformin against apoptotic cell death in primary cortical neurons, J. Mol. Neurosci., 34, 77, 10.1007/s12031-007-9002-1

Stephenne, 2011, Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status, Diabetologia, 10.1007/s00125-011-2311-5

Detaille, 2002, Obligatory role of membrane events in the regulatory effect of metformin on the respiratory chain function, Biochem. Pharmacol., 63, 1259, 10.1016/S0006-2952(02)00858-4

Guigas, 2004, Metformin inhibits mitochondrial permeability transition and cell death: a pharmacological in vitro study, Biochem. J., 382, 877, 10.1042/BJ20040885

Schafer, 1983, Photoaffinity cross-linking of oligomycin-sensitive ATPase from beef heart mitochondria by 3′-arylazido8-azido ATP, Biochem. Biophys. Res. Commun., 111, 732, 10.1016/0006-291X(83)90366-2

Batandier, 2006, The ROS production induced by a reverse-electron flux at respiratory-chain complex 1 is hampered by metformin, J. Bioenerg. Biomembr., 38, 33, 10.1007/s10863-006-9003-8

Kane, 2010, Metformin selectively attenuates mitochondrial H2O2 emission without affecting respiratory capacity in skeletal muscle of obese rats, Free Radical Biol. Med., 49, 1082, 10.1016/j.freeradbiomed.2010.06.022

Freisleben, 1992, The effects of glucose, insulin and metformin on the order parameters of isolated red cell membranes. An electron paramagnetic resonance spectroscopic study, Biochem. Pharmacol., 43, 1185, 10.1016/0006-2952(92)90491-Z

Muller, 1997, Action of metformin on erythrocyte membrane fluidity in vitro and in vivo, Eur. J. Pharmacol., 337, 103, 10.1016/S0014-2999(97)01287-9

Hawley, 2010, Use of cells expressing γ subunit variants to identify diverse mechanisms of AMPK activation, Cell Metab., 11, 554, 10.1016/j.cmet.2010.04.001

Shaw, 2005, The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin, Science, 310, 1642, 10.1126/science.1120781

Koo, 2005, The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism, Nature, 437, 1109, 10.1038/nature03967

Dentin, 2008, Hepatic glucose sensing via the CREB coactivator CRTC2, Science, 319, 1402, 10.1126/science.1151363

Caton, 2010, Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5, J. Endocrinol., 205, 97, 10.1677/JOE-09-0345

Liu, 2008, A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange, Nature, 456, 269, 10.1038/nature07349

He, 2009, Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein, Cell, 137, 635, 10.1016/j.cell.2009.03.016

Kim, 2008, Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP, Diabetes, 57, 306, 10.2337/db07-0381

Lee, 2010, AMPK-dependent repression of hepatic gluconeogenesis via disruption of CREB.CRTC2 complex by orphan nuclear receptor small heterodimer partner, J. Biol. Chem., 285, 32182, 10.1074/jbc.M110.134890

Takashima, 2010, Role of KLF15 in regulation of hepatic gluconeogenesis and metformin action, Diabetes, 59, 1608, 10.2337/db09-1679

Foretz, 2010, Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state, J. Clin. Invest., 120, 2355, 10.1172/JCI40671

Miller, 2010, An energetic tale of AMPK-independent effects of metformin, J. Clin. Invest., 120, 2267, 10.1172/JCI43661

Cool, 2006, Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome, Cell Metab., 3, 403, 10.1016/j.cmet.2006.05.005

Lin, 2000, Metformin reverses fatty liver disease in obese, leptin-deficient mice, Nat. Med., 6, 998, 10.1038/79697

Raso, 2009, Comparative therapeutic effects of metformin and vitamin E in a model of non-alcoholic steatohepatitis in the young rat, Eur. J. Pharmacol., 604, 125, 10.1016/j.ejphar.2008.12.013

Marchesini, 2001, Metformin in non-alcoholic steatohepatitis, Lancet, 358, 893, 10.1016/S0140-6736(01)06042-1

Nair, 2004, Metformin in the treatment of non-alcoholic steatohepatitis: a pilot open label trial, Aliment. Pharmacol. Ther., 20, 23, 10.1111/j.1365-2036.2004.02025.x

Zang, 2004, AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells, J. Biol. Chem., 279, 47898, 10.1074/jbc.M408149200

Foretz, 2005, Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver, Diabetes, 54, 1331, 10.2337/diabetes.54.5.1331

Foretz, 1998, AMP-activated protein kinase inhibits the glucose-activated expression of fatty acid synthase gene in rat hepatocytes, J. Biol. Chem., 273, 14767, 10.1074/jbc.273.24.14767

Hong, 2003, AMP-activated protein kinase regulates HNF4α transcriptional activity by inhibiting dimer formation and decreasing protein stability, J. Biol. Chem., 278, 27495, 10.1074/jbc.M304112200

Kawaguchi, 2002, Mechanism for fatty acid ‘sparing’ effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase, J. Biol. Chem., 277, 3829, 10.1074/jbc.M107895200

Leclerc, 2001, Hepatocyte nuclear factor-4α involved in type 1 maturity-onset diabetes of the young is a novel target of AMP-activated protein kinase, Diabetes, 50, 1515, 10.2337/diabetes.50.7.1515

Yang, 2001, Regulation of transcription by AMP-activated protein kinase: phosphorylation of p300 blocks its interaction with nuclear receptors, J. Biol. Chem., 276, 38341, 10.1074/jbc.C100316200

Li, 2011, AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice, Cell Metab., 13, 376, 10.1016/j.cmet.2011.03.009

Kim, 2011, Metformin inhibits nuclear receptor TR4-mediated hepatic stearoyl-CoA desaturase 1 gene expression with altered insulin sensitivity, Diabetes, 60, 1493, 10.2337/db10-0393

Takiyama, 2011, Tubular injury in a rat model of type 2 diabetes is prevented by metformin: a possible role of HIF-1α expression and oxygen metabolism, Diabetes, 60, 981, 10.2337/db10-0655

Morales, 2010, Metformin prevents experimental gentamicin-induced nephropathy by a mitochondria-dependent pathway, Kidney Int., 77, 861, 10.1038/ki.2010.11

Cufi, 2010, Metformin against TGFβ-induced epithelial-tomesenchymal transition (EMT): from cancer stem cells to aging-associated fibrosis, Cell Cycle, 9, 4461, 10.4161/cc.9.22.14048

Piwkowska, 2010, Metformin induces suppression of NAD(P)H oxidase activity in podocytes, Biochem. Biophys. Res. Commun., 393, 268, 10.1016/j.bbrc.2010.01.119

Louro, 2011, Insulin and metformin may prevent renal injury in young type 2 diabetic GotoKakizaki rats, Eur. J. Pharmacol., 653, 89, 10.1016/j.ejphar.2010.11.029

Wang, 2006, Effect of fenofibrate and metformin on lipotoxicity in OLETF rat kidney, Beijing Da Xue Xue Bao, 38, 170

Takiar, 2011, Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis, Proc. Natl. Acad. Sci. U.S.A., 108, 2462, 10.1073/pnas.1011498108

Pilmore, 2010, Review: metformin: potential benefits and use in chronic kidney disease, Nephrology, 15, 412, 10.1111/j.1440-1797.2010.01328.x

Nye, 2011, Metformin: the safest hypoglycaemic agent in chronic kidney disease?, Nephron Clin. Pract., 118, c380, 10.1159/000323739

Frid, 2010, Novel assay of metformin levels in patients with type 2 diabetes and varying levels of renal function: clinical recommendations, Diabetes Care, 33, 1291, 10.2337/dc09-1284

Hurst, 2003, Increased incidence of coronary atherosclerosis in type 2 diabetes mellitus: mechanisms and management, Ann. Intern. Med., 139, 824, 10.7326/0003-4819-139-10-200311180-00010

Johnson, 2005, Reduced cardiovascular morbidity and mortality associated with metformin use in subjects with Type 2 diabetes, Diabetic Med., 22, 497, 10.1111/j.1464-5491.2005.01448.x

Johnson, 2002, Decreased mortality associated with the use of metformin compared with sulfonylurea monotherapy in type 2 diabetes, Diabetes Care, 25, 2244, 10.2337/diacare.25.12.2244

Yin, 2011, Metformin improves cardiac function in a non-diabetic rat model of post-MI heart failure, Am. J. Physiol. Heart Circ. Physiol., 301, H459, 10.1152/ajpheart.00054.2011

Kravchuk, 2011, The effect of metformin on the myocardial tolerance to ischemia-reperfusion injury in the rat model of diabetes mellitus Type II, Exp. Diabetes Res., 2011, 907496, 10.1155/2011/907496

Yeh, 2010, AMP-activated protein kinase activation during cardioplegia-induced hypoxia/reoxygenation injury attenuates cardiomyocytic apoptosis via reduction of endoplasmic reticulum stress, Mediators Inflamm., 2010, 130636, 10.1155/2010/130636

Scolletta, 2010, Energetic myocardial metabolism and oxidative stress: let's make them our friends in the fight against heart failure, Biomed. Pharmacother., 64, 203, 10.1016/j.biopha.2009.10.002

Lopaschuk, 2006, Optimizing cardiac fatty acid and glucose metabolism as an approach to treating heart failure, Semin. Cardiothorac. Vasc. Anesth., 10, 228, 10.1177/1089253206291150

Benes, 2011, Effect of metformin therapy on cardiac function and survival in a volumeoverload model of heart failure in rats, Clin. Sci., 121, 29, 10.1042/CS20100527

Khurana, 2010, Metformin: safety in cardiac patients, Heart, 96, 99

MacDonald, 2010, Treatment of type 2 diabetes and outcomes in patients with heart failure: a nested case-control study from the U.K. General Practice Research Database, Diabetes Care, 33, 1213, 10.2337/dc09-2227

Eurich, 2005, Improved clinical outcomes associated with metformin in patients with diabetes and heart failure, Diabetes Care, 28, 2345, 10.2337/diacare.28.10.2345

Eurich, 2011, Wrongfully accused: metformin use in heart failure, Expert Rev. Cardiovasc. Ther., 9, 147, 10.1586/erc.10.186

Roussel, 2010, Metformin use and mortality among patients with diabetes and atherothrombosis, Arch. Intern. Med., 170, 1892, 10.1001/archinternmed.2010.409

Pantalone, 2010, The risk of overall mortality in patients with type 2 diabetes receiving glipizide, glyburide, or glimepiride monotherapy: a retrospective analysis, Diabetes Care, 33, 1224, 10.2337/dc10-0017

Xie, 2011, Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice, Diabetes, 60, 1770, 10.2337/db10-0351

Gundewar, 2009, Activation of AMPactivated protein kinase by metformin improves left ventricular function and survival in heart failure, Circ. Res., 104, 403, 10.1161/CIRCRESAHA.108.190918

Sasaki, 2009, Metformin prevents progression of heart failure in dogs: role of AMP-activated protein kinase, Circulation, 119, 2568, 10.1161/CIRCULATIONAHA.108.798561

Zhang, 2011, Metformin attenuates ventricular hypertrophy by activating the AMP-activated protein kinase-endothelial nitric oxide synthase pathway in rats, Clin. Exp. Pharmacol. Physiol., 38, 55, 10.1111/j.1440-1681.2010.05461.x

Muller, 2009, Nitric oxide, NAD(P)H oxidase and atherosclerosis, Antioxid. Redox Signaling, 11, 1711, 10.1089/ars.2008.2403

Schulz, 2005, Estradiol-mediated endothelial nitric oxide synthase association with heat shock protein 90 requires adenosine monophosphate-dependent protein kinase, Circulation, 111, 3473, 10.1161/CIRCULATIONAHA.105.546812

Ouslimani, 2005, Metformin decreases intracellular production of reactive oxygen species in aortic endothelial cells, Metab. Clin. Exp., 54, 829, 10.1016/j.metabol.2005.01.029

Kukidome, 2006, Activation of AMPactivated protein kinase reduces hyperglycemiainduced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells, Diabetes, 55, 120, 10.2337/diabetes.55.01.06.db05-0943

Rahbar, 2000, Evidence that pioglitazone, metformin and pentoxifylline are inhibitors of glycation, Clin. Chim. Acta, 301, 65, 10.1016/S0009-8981(00)00327-2

De Jager, 2005, Effects of short-term treatment with metformin on markers of endothelial function and inflammatory activity in type 2 diabetes mellitus: a randomized, placebo-controlled trial, J. Intern. Med., 257, 100, 10.1111/j.1365-2796.2004.01420.x

Zou, 2008, AMP-activated protein kinase activation as a strategy for protecting vascular endothelial function, Clin. Exp. Pharmacol. Physiol., 35, 535, 10.1111/j.1440-1681.2007.04851.x

Tang, 2010, Insulin-sensitising drugs (metformin, rosiglitazone, pioglitazone, D-chiro-inositol) for women with polycystic ovary syndrome, oligo amenorrhoea and subfertility, Cochrane Database Syst. Rev., 10.1002/14651858.CD003053.pub4

Thessaloniki ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group, 2008, Consensus on infertility treatment related to polycystic ovary syndrome, Hum. Reprod., 23, 462, 10.1093/humrep/dem426

Palomba, 2009, Evidence-based and potential benefits of metformin in the polycystic ovary syndrome: a comprehensive review, Endocr. Rev., 30, 1, 10.1210/er.2008-0030

Tosca, 2006, Metformin-induced stimulation of adenosine 5′ monophosphate-activated protein kinase (PRKA) impairs progesterone secretion in rat granulosa cells, Biol. Reprod., 75, 342, 10.1095/biolreprod.106.050831

Legro, 2008, Ovulatory response to treatment of polycystic ovary syndrome is associated with a polymorphism in the STK11 gene, J. Clin. Endocrinol. Metab., 93, 792, 10.1210/jc.2007-1736

Giovannucci, 2010, Diabetes and cancer: a consensus report, Diabetes Care, 33, 1674, 10.2337/dc10-0666

Jalving, 2010, Metformin: taking away the candy for cancer?, Eur. J. Cancer, 46, 2369, 10.1016/j.ejca.2010.06.012

Currie, 2009, The influence of glucose-lowering therapies on cancer risk in type 2 diabetes, Diabetologia, 52, 1766, 10.1007/s00125-009-1440-6

Evans, 2005, Metformin and reduced risk of cancer in diabetic patients, Br. Med. J., 330, 1304, 10.1136/bmj.38415.708634.F7

Bowker, 2010, Glucose-lowering agents and cancer mortality rates in type 2 diabetes: assessing effects of time-varying exposure, Diabetologia, 53, 1631, 10.1007/s00125-010-1750-8

Landman, 2010, Metformin associated with lower cancer mortality in type 2 diabetes: ZODIAC-16, Diabetes Care, 33, 322, 10.2337/dc09-1380

Libby, 2009, New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes, Diabetes Care, 32, 1620, 10.2337/dc08-2175

Bodmer, 2010, Long-term metformin use is associated with decreased risk of breast cancer, Diabetes Care, 33, 1304, 10.2337/dc09-1791

Li, 2009, Antidiabetic therapies affect risk of pancreatic cancer, Gastroenterology, 137, 482, 10.1053/j.gastro.2009.04.013

Wright, 2009, Metformin use and prostate cancer in Caucasian men: results from a population-based case-control study, Cancer Causes Control, 20, 1617, 10.1007/s10552-009-9407-y

Ben Sahra, 2010, Metformin in cancer therapy: a new perspective for an old antidiabetic drug?, Mol. Cancer Ther., 9, 1092, 10.1158/1535-7163.MCT-09-1186

Goodwin, 2008, Insulin-lowering effects of metformin in women with early breast cancer, Clin. Breast Cancer, 8, 501, 10.3816/CBC.2008.n.060

Schneider, 2001, Prevention of pancreatic cancer induction in hamsters by metformin, Gastroenterology, 120, 1263, 10.1053/gast.2001.23258

Algire, 2010, Diet and tumor LKB1 expression interact to determine sensitivity to antineoplastic effects of metformin in vivo, Oncogene, 30, 1174, 10.1038/onc.2010.483

Kalaany, 2009, Tumours with PI3K activation are resistant to dietary restriction, Nature, 458, 725, 10.1038/nature07782

Anisimov, 2005, Effect of metformin on life span and on the development of spontaneous mammary tumors in HER-2/neu transgenic mice, Exp. Gerontol., 40, 685, 10.1016/j.exger.2005.07.007

Huang, 2008, Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice, Biochem. J., 412, 211, 10.1042/BJ20080557

Tomimoto, 2008, Metformin suppresses intestinal polyp growth in ApcMin/+ mice, Cancer Sci., 99, 2136, 10.1111/j.1349-7006.2008.00933.x

Dowling, 2007, Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells, Cancer Res., 67, 10804, 10.1158/0008-5472.CAN-07-2310

Gotlieb, 2008, In vitro metformin anti-neoplastic activity in epithelial ovarian cancer, Gynecol. Oncol., 110, 246, 10.1016/j.ygyno.2008.04.008

Zakikhani, 2006, Metformin is an AMP kinasedependent growth inhibitor for breast cancer cells, Cancer Res., 66, 10269, 10.1158/0008-5472.CAN-06-1500

Green, 2010, The LKB1/AMPK signaling pathway has tumor suppressor activity in acute myeloid leukemia through the repression of mTOR-dependent oncogenic mRNA translation, Blood, 116, 4262, 10.1182/blood-2010-02-269837

Kalender, 2010, Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner, Cell Metab., 11, 390, 10.1016/j.cmet.2010.03.014

He, 2006, Thiazolidinediones inhibit insulin-like growth factor-I-induced activation of p70S6 kinase and suppress insulin-like growth factor-I tumor-promoting activity, Cancer Res., 66, 1873, 10.1158/0008-5472.CAN-05-3111

Kisfalvi, 2009, Metformin disrupts crosstalk between G protein-coupled receptor and insulin receptor signaling systems and inhibits pancreatic cancer growth, Cancer Res., 69, 6539, 10.1158/0008-5472.CAN-09-0418

Xiang, 2004, AMP-activated protein kinase activators can inhibit the growth of prostate cancer cells by multiple mechanisms, Biochem. Biophys. Res. Commun., 321, 161, 10.1016/j.bbrc.2004.06.133

Grisouard, 2011, Targeting AMP-activated protein kinase in adipocytes to modulate obesity-related adipokine production associated with insulin resistance and breast cancer cell proliferation, Diabetol. Metab. Syndr., 3, 16, 10.1186/1758-5996-3-16

Salminen, 2011, AMP-activated protein kinase inhibits NF-κB signaling and inflammation: impact on healthspan and lifespan, J. Mol. Med., 89, 667, 10.1007/s00109-011-0748-0

Xavier, 2010, Metformin inhibits inflammatory angiogenesis in a murine sponge model, Biomed. Pharmacothe.r, 64, 220, 10.1016/j.biopha.2009.08.004

Ersoy, 2008, The effect of metformin treatment on VEGF and PAI-1 levels in obese type 2 diabetic patients, Diabetes Res. Clin. Pract., 81, 56, 10.1016/j.diabres.2008.02.006

Vazquez-Martin, 2009, The antidiabetic drug metformin suppresses HER2 (erbB-2) oncoprotein overexpression via inhibition of the mTOR effector p70S6K1 in human breast carcinoma cells, Cell Cycle, 8, 88, 10.4161/cc.8.1.7499

Ben Sahra, 2008, The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level, Oncogene, 27, 3576, 10.1038/sj.onc.1211024

Ben Sahra, 2011, Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1, Cancer Res., 71, 4366, 10.1158/0008-5472.CAN-10-1769

Zhuang, 2008, Cell cycle arrest in Metformin treated breast cancer cells involves activation of AMPK, downregulation of cyclin D1 and requires p27Kip1 or p21Cip1, J. Mol. Signaling, 3, 18, 10.1186/1750-2187-3-18

Isakovic, 2007, Dual antiglioma action of metformin: cell cycle arrest and mitochondria-dependent apoptosis, Cell. Mol. Life Sci., 64, 1290, 10.1007/s00018-007-7080-4

Liu, 2009, Metformin induces unique biological and molecular responses in triple negative breast cancer cells, Cell Cycle, 8, 2031, 10.4161/cc.8.13.8814

Zhuang, 2011, Metformin induces both caspase-dependent and poly(ADP-ribose) polymerase-dependent cell death in breast cancer cells, Mol. Cancer Res., 9, 603, 10.1158/1541-7786.MCR-10-0343

Ben Sahra, 2010, Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells, Cancer Res., 70, 2465, 10.1158/0008-5472.CAN-09-2782

Jones, 2005, AMP-activated protein kinase induces a p53-dependent metabolic checkpoint, Mol. Cell, 18, 283, 10.1016/j.molcel.2005.03.027

Buzzai, 2007, Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth, Cancer Res., 67, 6745, 10.1158/0008-5472.CAN-06-4447

Metzger, 2008, Hyperglycemia and adverse pregnancy outcomes, N. Engl. J. Med., 358, 1991, 10.1056/NEJMoa0707943

Balani, 2009, Pregnancy outcomes in women with gestational diabetes treated with metformin or insulin: a case-control study, Diabetic Med., 26, 798, 10.1111/j.1464-5491.2009.02780.x

Rowan, 2008, Metformin versus insulin for the treatment of gestational diabetes, N. Engl. J. Med., 358, 2003, 10.1056/NEJMoa0707193

Knowler, 2002, Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin, N. Engl. J. Med., 346, 393, 10.1056/NEJMoa012512

Asher, 2011, Crosstalk between components of circadian and metabolic cycles in mammals, Cell Metab., 13, 125, 10.1016/j.cmet.2011.01.006

Um, 2007, Activation of 5′-AMP-activated kinase with diabetes drug metformin induces casein kinase I∊ (CKI∊)-dependent degradation of clock protein mPer2, J. Biol. Chem., 282, 20794, 10.1074/jbc.C700070200

Guigas, 2008, Metformin and the AMP-activated protein kinase, Metformin: Mechanistic Insights Towards New Applications, 81

Kimura, 2005, Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1, Drug Metab. Pharmacokinet., 20, 379, 10.2133/dmpk.20.379

Umehara, 2007, Functional involvement of organic cation transporter1 (OCT1/Oct1) in the hepatic uptake of organic cations in humans and rats, Xenobiotica, 37, 818, 10.1080/00498250701546012

Graham, 2011, Clinical pharmacokinetics of metformin, Clin. Pharmacokinet., 50, 81, 10.2165/11534750-000000000-00000

Zhou, 2009, Reduced-function SLC22A1 polymorphisms encoding organic cation transporter 1 and glycemic response to metformin: a GoDARTS study, Diabetes, 58, 1434, 10.2337/db08-0896

Tzvetkov, 2009, The effects of genetic polymorphisms in the organic cation transporters OCT1, OCT2 and OCT3 on the renal clearance of metformin, Clin. Pharmacol. Ther., 86, 299, 10.1038/clpt.2009.92

Wang, 2008, OCT2 polymorphisms and in-vivo renal functional consequence: studies with metformin and cimetidine, Pharmacogenet. Genomics, 18, 637, 10.1097/FPC.0b013e328302cd41

Distefano, 2010, Pharmacogenetics of anti-diabetes drugs, Pharmaceuticals, 3, 2610, 10.3390/ph3082610

Zhou, 2011, Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes, Nat. Genet., 43, 117, 10.1038/ng.735

Algire, 2008, Metformin attenuates the stimulatory effect of a high-energy diet on in vivo LLC1 carcinoma growth, Endocr. Relat. Cancer, 15, 833, 10.1677/ERC-08-0038

Hirsch, 2009, Metformin selectively targets cancer stem cells and acts together with chemotherapy to block tumor growth and prolong remission, Cancer Res., 69, 7507, 10.1158/0008-5472.CAN-09-2994

Bojkova, 2009, Metformin in chemically-induced mammary carcinogenesis in rats, Neoplasma, 56, 269, 10.4149/neo_2009_03_269

Memmott, 2010, Metformin prevents tobacco carcinogen–induced lung tumorigenesis, Cancer Prev. Res., 3, 1066, 10.1158/1940-6207.CAPR-10-0055

Hosono, 2010, Metformin suppresses azoxymethane-induced colorectal aberrant crypt foci by activating AMP-activated protein kinase, Mol. Carcinog., 49, 662, 10.1002/mc.20637