Cellular and molecular mechanisms of fibrosis

Journal of Pathology - Tập 214 Số 2 - Trang 199-210 - 2008
Thomas A. Wynn1
1Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA

Tóm tắt

Abstract

Fibrosis is defined by the overgrowth, hardening, and/or scarring of various tissues and is attributed to excess deposition of extracellular matrix components including collagen. Fibrosis is the end result of chronic inflammatory reactions induced by a variety of stimuli including persistent infections, autoimmune reactions, allergic responses, chemical insults, radiation, and tissue injury. Although current treatments for fibrotic diseases such as idiopathic pulmonary fibrosis, liver cirrhosis, systemic sclerosis, progressive kidney disease, and cardiovascular fibrosis typically target the inflammatory response, there is accumulating evidence that the mechanisms driving fibrogenesis are distinct from those regulating inflammation. In fact, some studies have suggested that ongoing inflammation is needed to reverse established and progressive fibrosis. The key cellular mediator of fibrosis is the myofibroblast, which when activated serves as the primary collagen‐producing cell. Myofibroblasts are generated from a variety of sources including resident mesenchymal cells, epithelial and endothelial cells in processes termed epithelial/endothelial‐mesenchymal (EMT/EndMT) transition, as well as from circulating fibroblast‐like cells called fibrocytes that are derived from bone‐marrow stem cells. Myofibroblasts are activated by a variety of mechanisms, including paracrine signals derived from lymphocytes and macrophages, autocrine factors secreted by myofibroblasts, and pathogen‐associated molecular patterns (PAMPS) produced by pathogenic organisms that interact with pattern recognition receptors (i.e. TLRs) on fibroblasts. Cytokines (IL‐13, IL‐21, TGF‐β1), chemokines (MCP‐1, MIP‐1β), angiogenic factors (VEGF), growth factors (PDGF), peroxisome proliferator‐activated receptors (PPARs), acute phase proteins (SAP), caspases, and components of the renin–angiotensin–aldosterone system (ANG II) have been identified as important regulators of fibrosis and are being investigated as potential targets of antifibrotic drugs. This review explores our current understanding of the cellular and molecular mechanisms of fibrogenesis. Copyright © 2007 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Từ khóa


Tài liệu tham khảo

10.1172/JCI31487

10.1038/nrm809

10.1038/ncpgasthep0055

10.1055/s-2001-17556

Kumar V, 2005, Pathologic Basis of Disease, 87

10.1146/annurev.immunol.24.021605.090737

10.1146/annurev.immunol.21.120601.141142

10.1111/j.1440-1746.2006.04659.x

10.1513/pats.200601-012TK

10.1007/s11926-006-0055-x

10.1038/nm1613

10.1513/pats.200601-004TK

10.1172/JCI200320530

10.1007/BF03403533

10.1016/j.exphem.2005.10.008

10.1136/gut.50.6.752

10.1634/stemcells.21-5-514

10.1053/j.gastro.2004.02.025

10.1053/j.gastro.2006.01.036

10.1172/JCI200420997

10.1016/S0002-9440(10)62289-4

10.1073/pnas.0608799103

10.1172/JCI30595

10.1016/S0016-5085(03)00403-7

10.1038/nri1391

10.1016/j.cytogfr.2005.03.004

10.1097/00002281-199811000-00011

10.1016/j.it.2005.09.004

10.1172/JCI31139

10.4049/jimmunol.173.6.4020

10.1242/jcs.02554

Markiewicz M, 2004, The 72‐kDa IE‐1 protein of human cytomegalovirus (HCMV) is a potent inducer of connective tissue growth factor (CTGF) in human dermal fibroblasts, Clin Exp Rheumatol, 22, S31

10.1002/art.21948

10.1016/j.jdermsci.2005.03.013

10.1038/nri1412

10.1006/cimm.1999.1537

10.1159/000098208

10.1073/pnas.0700021104

10.4049/jimmunol.153.10.4704

10.1002/jlb.57.5.782

10.1084/jem.185.7.1371

10.1172/JCI200112214

10.4049/jimmunol.164.5.2745

10.4049/jimmunol.165.3.1564

10.1172/JCI0214040

10.4049/jimmunol.167.8.4368

10.4049/jimmunol.168.6.2953

10.1084/jem.185.11.1959

10.1165/rcmb.2002-0009OC

10.4049/jimmunol.172.3.1872

10.1038/376594a0

10.4049/jimmunol.153.2.753

10.1172/JCI7325

10.1172/JCI27727

10.1128/IAI.74.3.1471-1479.2006

10.3109/01902149509050842

10.1152/ajplung.2001.281.1.L92

10.1046/j.1523-1755.1999.00775.x

10.1016/S0140-6736(03)15109-4

10.1016/S0002-9440(10)64607-X

10.1084/jem.20050631

10.1096/fj.01-0306fje

10.4049/jimmunol.171.7.3655

10.1186/1471-2105-6-168

10.1038/nri701

10.4049/jimmunol.167.11.6533

Decitre M, 1998, Lysyl oxidase‐like protein localizes to sites of de novo fibrinogenesis in fibrosis and in the early stromal reaction of ductal breast carcinomas, Lab Invest, 78, 143

Akiri G, 2003, Lysyl oxidase‐related protein‐1 promotes tumor fibrosis and tumor progression in vivo, Cancer Res, 63, 1657

10.1152/ajprenal.00382.2002

10.1016/S0002-9440(10)64327-1

10.1152/ajplung.2000.279.5.L895

10.1016/S0002-9440(10)62228-6

10.1681/ASN.V124736

10.4049/jimmunol.167.12.7017

10.1073/pnas.97.4.1778

10.1053/jhep.2000.9322

10.1111/j.1365-2249.1990.tb05416.x

10.1111/j.1365-2249.1995.tb03131.x

10.4049/jimmunol.172.2.1295

10.1165/ajrcmb.17.3.2279

Fertin C, 1991, Interleukin‐4 stimulates collagen synthesis by normal and scleroderma fibroblasts in dermal equivalents, Cell Mol Biol, 37, 823

10.1146/annurev.immunol.16.1.137

10.4049/jimmunol.152.7.3606

10.1172/JCI741

10.1002/(SICI)1521-4141(199809)28:09<2619::AID-IMMU2619>3.0.CO;2-M

10.1172/JCI5504

10.1002/j.1460-2075.1993.tb05927.x

10.1016/S1074-7613(00)80625-1

10.1172/JCI5909

10.4049/jimmunol.161.5.2317

10.4049/jimmunol.166.8.5219

10.1046/j.1365-2222.2002.01420.x

10.4049/jimmunol.178.1.511

10.4049/jimmunol.172.7.4068

10.1053/jhep.2001.26376

10.4049/jimmunol.164.5.2585

10.1073/pnas.93.15.7821

10.1002/eji.200324178

10.1016/S0002-9440(10)64867-5

10.1038/nm1332

10.1084/jem.20020906

10.1165/ajrcmb.16.4.9115755

10.4049/jimmunol.178.12.7879

10.1172/JCI21073

10.1073/pnas.87.1.61

10.1189/jlb.68.4.515

10.1002/jlb.64.5.657

10.1165/ajrcmb.23.2.3999

10.1172/JCI19133

10.1046/j.1365-2222.2001.01084.x

10.4049/jimmunol.171.10.5470

10.1084/jem.20020009

Tanaka H, 2004, Role of IL‐5 and eosinophils in allergen‐induced airway remodelling in mice, Am J Respir Cell Mol Biol, 19, 19

10.1182/blood-2006-05-021600

10.1172/JCI200522675

10.1172/JCI200319270

10.1038/360361a0

10.1172/JCI119815

10.1172/JCI119590

10.1038/nri704

10.1016/S0092-8674(00)80545-0

10.1111/j.1749-6632.2003.tb03205.x

10.1016/S0002-9440(10)64926-7

10.1126/science.1090922

10.1165/ajrcmb.15.2.8703482

10.1016/S0002-9440(10)63486-4

10.1038/12971

10.1084/jem.194.6.809

10.1172/JCI0214136

10.1172/JCI8124

10.1084/jem.192.2.151

10.1172/JCI7589

10.1084/jem.20030917

10.1172/JCI200419603

Oriente A, 2000, Interleukin‐13 modulates collagen homeostasis in human skin and keloid fibroblasts, J Pharmacol Exp Ther, 292, 988

10.1002/art.22035

10.1016/j.biocel.2005.08.002

10.1038/nrn2007

10.1172/JCI31030

10.1172/JCI30562

10.1161/01.HYP.0000153321.13792.b9

10.1161/hy09t1.094234

10.1016/j.cardiores.2004.04.030

10.1172/JCI18212

10.1152/ajpheart.00578.2001

10.1161/01.CIR.96.3.874

10.1172/JCI31044

10.1097/00041552-200405000-00003

10.1146/annurev.immunol.19.1.683

10.1002/hep.510280620

10.1002/hep.510280621

10.1152/ajplung.2000.278.5.L914

10.1152/ajpgi.00431.2001

10.1046/j.1365-2613.1997.d01-241.x

10.1074/jbc.273.1.302

10.1002/hep.1840380412

10.4049/jimmunol.160.9.4473

10.4049/jimmunol.164.12.6406

10.1172/JCI31546

10.4049/jimmunol.169.11.6482

10.4049/jimmunol.167.3.1683

Feng N, 1998, The interleukin‐4/interleukin‐13 receptor of human synovial fibroblasts: overexpression of the nonsignalling interleukin‐13 receptor α2, Lab Invest, 78, 591

10.1084/jem.20020903

10.1073/pnas.0305064101

10.1053/j.gastro.2004.03.009

10.1172/JCI30542

10.1016/j.cld.2006.08.022

10.1097/00001432-200410000-00009

10.1089/clo.2006.8.189

10.1172/JCI1018

10.1146/annurev.med.55.091902.103810

10.1053/gast.2001.27188

10.1002/jcb.20886

10.1002/hep.21695