Cell structure formation in a two-dimensional density-based dislocation dynamics model

Materials Theory - Tập 5 - Trang 1-22 - 2021
Ronghai Wu1, Michael Zaiser2
1School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xian, P.R. China
2Department of Materials Science, WW8-Materials Simulation, Friedrich-Alexander Universität Erlangen-Nürnberg, Fürth, Germany

Tóm tắt

Cellular patterns formed by self-organization of dislocations are a most conspicuous feature of dislocation microstructure evolution during plastic deformation. To elucidate the physical mechanisms underlying dislocation cell structure formation, we use a minimal model for the evolution of dislocation densities under load. By considering only two slip systems in a plane strain setting, we arrive at a model which is amenable to analytical stability analysis and numerical simulation. We use this model to establish analytical stability criteria for cell structures to emerge, to investigate the dynamics of the patterning process and establish the mechanism of pattern wavelength selection. This analysis demonstrates an intimate relationship between hardening and cell structure formation, which appears as an almost inevitable corollary to dislocation dominated strain hardening. Specific mechanisms such as cross slip, by contrast, turn out to be incidental to the formation of cellular patterns.

Tài liệu tham khảo

Y. Aoyagi, R. Kobayashi, Y. Kaji, K. Shizawa, Modeling and simulation on ultrafine-graining based on multiscale crystal plasticity considering dislocation patterning. Int. J. Plast.47:, 13–28 (2013). G. M. Castelluccio, D. L. McDowell, Mesoscale cyclic crystal plasticity with dislocation substructures. Int. J. Plast.98:, 1–26 (2017). Y. S. Chen, W. Choi, S. Papanikolaou, M. Bierbaum, J. P. Sethna, Scaling theory of continuum dislocation dynamics in three dimensions: Self-organized fractal pattern formation. Int. J. Plast.46:, 94–129 (2013). H. Fan, J. El-Awady, Q. Wang, D. Raabe, M. Zaiser, Strain rate dependency of dislocation plasticity. Nat. Commun. (2021). arXiv preprint 2003.09560. D. L. Gerlough, M. J. Huber, Traffic Flow Theory (National Research Council. Transportation Research Board, Washington DC, 1975). N. Grilli, K. Janssens, J. Nellessen, S. Sandlöbes, D. Raabe, Multiple slip dislocation patterning in a dislocation-based crystal plasticity finite element method. Int. J. Plast.100:, 104–121 (2018). I. Groma, F. F. Csikor, M. Zaiser, Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics. Acta Mater.51:, 1271–1281 (2003). I. Groma, M. Zaiser, P. D. Ispanovity, Dislocation patterning in a 2D continuum theory of dislocations. Phys. Rev. B. 93:, 214110 (2016). P. Hähner, K. Bay, M. Zaiser, Fractal dislocation patterning during plastic deformation. Phys. Rev. Lett.81:, 2470–2473 (1998). P. Hähner, M. Zaiser, Dislocation dynamics and work hardening of fractal dislocation cell structures. Mater. Sci. Eng. A. 272:, 443–454 (1998). T. Hochrainer, Multipole expansion of continuum dislocations dynamics in terms of alignment tensors. Philos. Mag.95:, 1321–1367 (2015). http://arxiv.org/abs/doi:10.1080/14786435.2015.1026297. T. Hochrainer, S. Sandfeld, M. Zaiser, P. Gumbsch, Continuum dislocation dynamics: towards a physical theory of crystal plasticity. J. Mech. Phys. Solids. 63:, 167–178 (2014). D. L. Holt, Dislocation cell formation in metals. J. Appl. Phys.41:, 3197–3201 (1970). A. M. Hussein, J. A. El-Awady, Quantifying dislocation microstructure evolution and cyclic hardening in fatigued face-centered cubic single crystals. J. Mech. Phys. Solids. 91:, 126–144 (2016). S. Limkumnerd, E. V. der Giessen, Statistical approach to dislocation dynamics: From dislocation correlations to a multiple-slip continuum theory of plasticity. Phys. Rev. B. 77:, 184111 (2008). S. Limkumnerd, J. P. Sethna, Shocks and slip systems: Predictions from a mesoscale theory of continuum dislocation dynamics. J. Mech. Phys. Solids. 56(4), 1450–1459 (2008). P. Lin, A. El-Azab, Implementation of annihilation and junction reactions in vector density-based continuum dislocation dynamics. Model. Simul. Mater. Sci. Eng.28(4), 045003 (2020). R. Madec, B. Devincre, L. P. Kubin, Simulation of dislocation patterns in multislip. Scripta Mater.47:, 689–695 (2002). H. Mughrabi, Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals. Acta Metall.31:, 1367–1379 (1983). H. Mughrabi, On the role of strain gradients and long-range internal stresses in the composite model of crystal plasticity. Mater. Sci. Eng. A. 317:, 171–180 (2001). A. Oudriss, X. Feaugas, Length scales and scaling laws for dislocation cells developed during monotonic deformation of (001) nickel single crystal. Int. J. Plast.78:, 187–202 (2016). J. Pontes, D. Walgraef, E. Aifantis, On dislocation patterning: multiple slip effects in the rate equation approach. Int. J. Plast.22(8), 1486–1505 (2006). P. Rudolph, Dislocation cell structures in melt-grown semiconductor compound crystals. Cryst. Res. Technol.40:, 7–20 (2005). S. Sandfeld, M. Zaiser, Pattern formation in a minimal model of continuum dislocation plasticity. Model. Simul. Mater. Sci. Eng.23(6), 065005 (2015). M. Sauzay, L. P. Kubin, Scaling laws for dislocation microstructures in monotonic and cyclic deformation of fcc metals. Prog. Mater. Sci.56(6), 725–784 (2011). J. Schwerdtfeger, E. Nadgorny, V. Koutsos, J. R. Blackford, M. Zaiser, Statistical heterogeneity of plastic deformation: An investigation based on surface profilometry. Acta Mater.58:, 4859–4870 (2010). G. Streb, B. Reppich, Steady state deformation and dislocation structure of pure and Mg-doped LiF single crystals. II. Etch pit studies of dislocation structure. Phys. Status Solidi A. 16:, 493–505 (1973). F. Szekely, I. Groma, J. Lendvai, Characterization of self-similar dislocation structures by X-ray diffraction. Mater. Sci. Eng. A. 324(1-2), 179–182 (2002). P. L. Valdenaire, Y. Le Bouar, B. Appolaire, A. Finel, Density-based crystal plasticity: From the discrete to the continuum. Phys. Rev. B. 93:, 214111 (2016). D. Walgraef, E. C. Aifantis, Dislocation patterning in fatigued metals as a result of dynamical instabilities. J. Appl. Phys.58:, 688–691 (1985). R. Wu, D. Tüzes, P. D. Ispanovity, I. Groma, M. Zaiser, Instability of dislocation fluxes in single slip: Deterministic and stochastic models of dislocation patterning. Phys. Rev. B. 98:, 054110 (2018). S. Xia, A. El-Azab, Computational modelling of mesoscale dislocation patterning and plastic deformation of single crystals. Model. Simul. Mater. Sci. Eng.23:, 055009 (2015). S. Yefimov, I. Groma, E. Van der Giessen, A comparison of a statistical-mechanics based plasticity model with discrete dislocation plasticity calculations. J. Mech. Phys. Solids. 52:, 279–300 (2004). S. Yefimov, E. Van der Giessen, Multiple slip in a strain-gradient plasticity model motivated by a statistical-mechanics description of dislocations. Int. J. Solids Struct.11:, 3375–3394 (2005). M. Zaiser, A generalized composite approach to the flow stress and strain hardening of metals containing heterogeneous dislocation distributions. Mater. Sci. Eng. A. 249:, 145–151 (1998). M. Zaiser, Local density approximation for the energy functional of three-dimensional dislocation systems. Phys. Rev. B. 92(17), 174120 (2015). M. Zaiser, P. Moretti, Fluctuation phenomena in crystal plasticity–a continuum model. J. Stat. Mech. Theory Exp.2005(08), 08004 (2005). M. Zaiser, S. Sandfeld, Scaling properties of dislocation simulations in the similitude regime. Model. Simul. Mater. Sci. Eng.22:, 065012 (2014).