Cell orientation induced by extracellular signals

Cell Biochemistry and Biophysics - Tập 30 - Trang 167-192 - 1999
Ralf Kemkemer1, Cornelia Neidlinger-Wilke2, Lutz Claes2, Hans Gruler1
1BioPhysics Department, Complex Fluids Group, Universität Ulm, Ulm, Germany
2Abteilung Unfallchirugische Forschung und Biomechanik, Universität Ulm, Ulm, Germany

Tóm tắt

Cells like fibroblasts and osteoblasts are oriented by different extracellular guiding signals like an electric field, a bent surface, and a periodically stretched surface. An automatic controller is responsible for the cell alignment. The controller contains both a deterministic and a stochastic signal. The following machine properties were determined:

Tài liệu tham khảo

N. Wiener (1961)Cybernetics: or Control and Communication in Animal and Machine, MIT Press Cambridge, MA. H. Gruler (1991) Cell movement and automatic control, inBiologically Inspired Physics, (Peliti, L., ed.), Plenum Press, NY, pp. 217–227. J.P. Trinkaus (1984)Cells into Organs, Pentrice-Hall, Englewood Cliffs, NJ. M. Schienbein, K. Franke, H. Gruler (1994) Random walk and directed movement: comparison between inert particles and self-organized molecular machines.Phys. Rev. E. 49, 5492–5471. A. M. McGillivray and N.A.R. Gow (1986) Applied electrical fields polarize the growth of mycelial fungi.J. Gen. Microbiol. 132, 2515–2525. H. Gruler N. A. Gow (1990) Directed growth of fungal hyphae in an electric field.Z. Naturforsch. 45c, 306–313. C.A. Erickson and R. Nuccitelli (1984) Embryonic fibroblast motility and orientation can be influenced by physiological fields.J. Cell Biol. 98, 296–307. S.M. Ross, J.M. Ferrier, J.A. Aubin (1989) Studies on the alignment of fibroblasts in uniform applied electric fields.Bielectom. 10, 371–384. M.S. Cooper, R.E. Keller (1984) Perpendicular orientation and directional migration of amphibian neural crest cells in de electrical fields.Proc. Natl. Acad. Sci. USA 81, 160–164. J.M. Ferrier, S.M. Ross, J. Kanehisa, J.E. Aubin (1986) Osteoclasts and Osteoblasts Migrate in Opposite Directions in Response to a Constant Electric Field.J. Cell Physiol. 129, 283–288. M. Abercrombie (1982) The crawling movement of metazoan cells, inCell Behaviour, Bellairs, R., Curtis, A., and Dunn, G., eds.), Cambridge University Press, Cambridge, MA, pp. 19–48. C. Neidlinger-Wilke, H.-J. Wilke, L. Claes (1994) Cyclic stretching of human osteoblasts affects proliferation and metabolism: A new experimental method and its application.J. Orthop. Res. 12, 70–78. R. Nuccitelli (1988) Physiological electric fields can influence cell motility, growth, and polarity.Adv. Cell Biol. 2, 213–233. M. Schienbein, H. Gruler (1995) Chemical amplifier, self-ignition mechanism and amoeboid cell migration.Phys. Rev. E. 52 4183–4197. H. Risken (1984)The Fokker-Planck Equation Springer Verlag, Heidelberg. M. Schienbein, H. Gruler (1993) Langevin equation, Fokker-Planck equation and cell migration.Bull. Math. Biol. 55, 585. H. Gruler (1993) Directed cell movement: A biophysical analysis.Blood Cells,19, 91–113. J. Ferrier, S.M. Ross, J. Kaneshisa, J.E. Aubin (1986) Osteoclasts and osteoblasts migrate in opposite directions in response to a constant electrical field.J. Cell Physiol. 129, 283–288. A. de Boisfleury-Chevance, B. Rapp, H. Gruler (1989) Locomotion of white blood cells: A biophysical analysis.Blood Cells 15, 315–333. H. Gruler, R. Nuccitelli (1991) Neural Crest Cell Galvanotaxis: new data and a novel approach to the analysis of both galvanotaxis and chemotaxis.Cell Motil. Cytol. 19, 121–133. L. Hinkel, C.D. Craig, K.R. Robinson (1981) The direction of growth of differentiating neurones and myoblasts from frog embryos in an applied electric field.J. Physiol. (London) 314, 121–135. S.O. Mast (1931)Z. Wiss. Biol Abt. C 15, 309. A.F. Friend, E.D. Finch, H.P. Schwan (1975) Low frequency electric field induced changes in the shape and motility of amoebas.Science 187, 357–359.