Cdc45-MCM-GINS, một nhân tố mới quan trọng trong quá trình sao chép DNA

Tomás Aparicio1, Arkaitz Ibarra1, Juan Pablo Méndez1
1DNA replication Group, Molecular Oncology Programme, Spanish National Cancer Center (CNIO), Melchor Fernandez Almagro 3, E-28029, Madrid, Spain

Tóm tắt

Tóm tắt Danh tính của các helicase DNA liên quan đến sự sao chép DNA ở eukaryote vẫn là một vấn đề gây tranh cãi, nhưng các protein bảo trì mini-chromosome (MCM) là ứng viên hàng đầu. Sáu protein MCM bảo tồn, Mcm2–7, là thiết yếu cho các giai đoạn khởi đầu và kéo dài của quá trình sao chép DNA, chứa các túi liên kết ATP và có thể hình thành cấu trúc hexamer tương tự như các helicase đã biết ở prokaryote và virus. Tuy nhiên, bằng chứng sinh hóa cho chức năng được giả định của chúng vẫn chưa rõ ràng. Một số báo cáo gần đây xác nhận rằng phức hợp MCM là một phần của máy móc tế bào có trách nhiệm mở cuộn DNA trong giai đoạn S. Trong một trong những báo cáo này, hoạt động helicase của Mcm2–7 cuối cùng được công bố, khi chúng được tinh chế kết hợp với hai đối tác: yếu tố khởi đầu Cdc45 và một phức hợp bốn tiểu đơn vị gọi là GINS. Phức hợp Cdc45-MCM-GINS có thể cấu thành lõi của một cấu trúc đại phân tử lớn hơn mà đã được gọi là "phức hợp tiến triển replisome".

Từ khóa


Tài liệu tham khảo

Johnson A, O'Donnell M: Cellular DNA replicases: components and dynamics at the replication fork. Annu Rev Biochem 2005, 74: 283–315. 10.1146/annurev.biochem.73.011303.073859

Stillman B: Origin recognition and the chromosome cycle. FEBS Lett 2005, 579: 877–884. 10.1016/j.febslet.2004.12.011

Hickson ID: RecQ helicases: caretakers of the genome. Nat Rev Cancer 2003, 3: 169–178. 10.1038/nrc1012

Bowers JL, Randell JC, Chen S, Bell SP: ATP hydrolysis by ORC catalyzes reiterative Mcm2–7 assembly at a defined origin of replication. Mol Cell 2004, 16: 967–978. 10.1016/j.molcel.2004.11.038

Randell JC, Bowers JL, Rodriguez HK, Bell SP: Sequential ATP hydrolysis by Cdc6 and ORC directs loading of the Mcm2–7 helicase. Mol Cell 2006, 21: 29–39. 10.1016/j.molcel.2005.11.023

Waga S, Zembutsu A: Dynamics of DNA binding of replication initiation proteins during de novo formation of pre-replicative complexes in Xenopus egg extracts. J Biol Chem 2006, 281: 10926–10934. 10.1074/jbc.M600299200

Maine GT, Sinha P, Tye BK: Mutants of S. cerevisiae defective in the maintenance of minichromosomes. Genetics 1984, 106: 365–85.

Chong JP, Mahbubani HM, Khoo CY, Blow JJ: Purification of an MCM-containing complex as a component of the DNA replication licensing system. Nature 1995, 375: 418–421. 10.1038/375418a0

Aparicio OM, Weinstein DM, Bell SP: Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell 1997, 91: 59–69. 10.1016/S0092-8674(01)80009-X

DePamphilis ML, Blow JJ, Ghosh S, Saha T, Noguchi K, Vassilev A: Regulating the licensing of DNA replication origins in metazoa. Curr Opin Cell Biol 2006, 18: 231–239. 10.1016/j.ceb.2006.04.001

Woodward AM, Gohler T, Luciani MG, Oehlmann M, Ge X, Gartner A, Jackson DA, Blow JJ: Excess Mcm2–7 license dormant origins of replication that can be used under conditions of replicative stress. J Cell Biol 2006, 173: 673–683. 10.1083/jcb.200602108

Laskey RA, Madine MA: A rotary pumping model for helicase function of MCM proteins at a distance from replication forks. EMBO Rep 2003, 4: 26–30. 10.1038/sj.embor.embor706

Méndez J, Stillman B: Perpetuating the double helix: molecular machines at eukaryotic DNA replication origins. Bioessays 2003, 25: 1158–1167. 10.1002/bies.10370

Kelman Z, Lee JK, Hurwitz J: The single minichromosome maintenance protein of Methanobacterium thermoautotrophicum DeltaH contains DNA helicase activity. Proc Natl Acad Sci USA 1999, 96: 14783–14788. 10.1073/pnas.96.26.14783

Chong JP, Hayashi MK, Simon MN, Xu RM, Stillman B: A double-hexamer archaeal minichromosome maintenance protein is an ATP-dependent DNA helicase. Proc Natl Acad Sci USA 2000, 97: 1530–1535. 10.1073/pnas.030539597

Shechter DF, Ying CY, Gautier J: The intrinsic DNA helicase activity of Methanobacterium thermoautotrophicum delta H minichromosome maintenance protein. J Biol Chem 2000, 275: 15049–15059. 10.1074/jbc.M000398200

Schwacha A, Bell SP: Interactions between two catalytically distinct MCM subgroups are essential for coordinated ATP hydrolysis and DNA replication. Mol Cell 2001, 8: 1093–1104. 10.1016/S1097-2765(01)00389-6

Ishimi Y: A DNA helicase activity is associated with an MCM4, -6, and -7 protein complex. J Biol Chem 1997, 272: 24508–24513. 10.1074/jbc.272.39.24508

Masuda T, Mimura S, Takisawa H: CDK- and Cdc45-dependent priming of the MCM complex on chromatin during S-phase in Xenopus egg extracts: possible activation of MCM helicase by association with Cdc45. Genes Cells 2003, 8: 145–161. 10.1046/j.1365-2443.2003.00621.x

Calzada A, Hodgson B, Kanemaki M, Bueno A, Labib K: Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork. Genes Dev 2005, 19: 1905–1919. 10.1101/gad.337205

Katou Y, Kanoh Y, Bando M, Noguchi H, Tanaka H, Ashikari T, Sugimoto K, Shirahige K: S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature 2003, 424: 1078–1083. 10.1038/nature01900

Zou L, Mitchell J, Stillman B: CDC45, a novel yeast gene that functions with the origin recognition complex and Mcm proteins in initiation of DNA replication. Mol Cell Biol 1997, 17: 553–563.

Takayama Y, Kamimura Y, Okawa M, Muramatsu S, Sugino A, Araki H: GINS, a novel multiprotein complex required for chromosomal DNA replication in budding yeast. Genes Dev 2003, 17: 1153–1165. 10.1101/gad.1065903

Kanemaki M, Sanchez-Diaz A, Gambus A, Labib K: Functional proteomic identification of DNA replication proteins by induced proteolysis in vivo. Nature 2003, 423: 720–724. 10.1038/nature01692

Pacek M, Tutter AV, Kubota Y, Takisawa H, Walter JC: Localization of MCM2–7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication. Mol Cell 2006, 21: 581–587. 10.1016/j.molcel.2006.01.030

Byun TS, Pacek M, Yee MC, Walter JC, Cimprich KA: Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev 2005, 19: 1040–1052. 10.1101/gad.1301205

Kubota Y, Takase Y, Komori Y, Hashimoto Y, Arata T, Kamimura Y, Araki H, Takisawa H: A novel ring-like complex of Xenopus proteins essential for the initiation of DNA replication. Genes Dev 2003, 17: 1141–1152. 10.1101/gad.1070003

Gambus A, Jones RC, Sanchez-Diaz A, Kanemaki M, van Deursen F, Edmondson RD, Labib K: GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol 2006, 8: 358–366. 10.1038/ncb1382

Fien K, Hurwitz J: Fission yeast mcm10p contains primase activity. J Biol Chem 2006, 281: 22248–22260. 10.1074/jbc.M512997200

Moyer SE, Lewis PW, Botchan MR: Isolation of the Cdc45/Mcm2–7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci USA 2006, 103: 10236–10241. 10.1073/pnas.0602400103

Araki H, Leem SH, Phongdara A, Sugino A: Dpb11, which interacts with DNA polymerase II(epsilon) in Saccharomyces cerevisiae, has a dual role in S-phase progression and at a cell cycle checkpoint. Proc Natl Acad Sci USA 1995, 92: 11791–11795. 10.1073/pnas.92.25.11791

Kamimura Y, Masumoto H, Sugino A, Araki H: Sld2, which interacts with Dpb11 in Saccharomyces cerevisiae, is required for chromosomal DNA replication. Mol Cell Biol 1998, 18: 6102–6109.

Seki T, Akita M, Kamimura Y, Muramatsu S, Araki H, Sugino A: GINS Is a DNA Polymerase ε Accessory Factor during Chromosomal DNA Replication in Budding Yeast. J Biol Chem 2006, 281: 21422–21432. 10.1074/jbc.M603482200

Marinsek N, Barry ER, Makarova KS, Dionne I, Koonin EV, Bell SD: GINS, a central nexus in the archaeal DNA replication fork. EMBO Rep 2006, 7: 539–545.

Maiorano D, Cuvier O, Danis E, Mechali M: MCM8 is an MCM2–7-related protein that functions as a DNA helicase during replication elongation and not initiation. Cell 2005, 120: 315–328. 10.1016/j.cell.2004.12.010

Ueno M, Itoh M, Kong L, Sugihara K, Asano M, Takakura N: PSF1 is essential for early embryogenesis in mice. Mol Cell Biol 2005, 25: 10528–10532. 10.1128/MCB.25.23.10528-10532.2005