CdS/CdTe Heterostructures for Applications in Ultra-Thin Solar Cells

Materials - Tập 11 Số 10 - Trang 1788
K. Gutiérrez Z-B1, P. G. Zayas-Bazán1, O. de Melo2,3, F. de Moure‐Flores4, J.A. Andraca-Adame5, Luis A. Moreno‐Ruiz5, Hugo Martínez‐Gutiérrez5, S. Gallardo‐Hernández6, J. Sastré‐Hernández1, G. Contreras‐Puente1
1Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ciudad de México C.P. 07738, Mexico
2Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico
3Facultad de Física, Universidad de La Habana, Colina Universitaria, La Habana C.P. 10400, Cuba
4Facultad de Química, Materiales-Energía, Universidad Autónoma de Querétaro, Querétaro C.P. 76010, Mexico
5Centro de Nanociencias y Micro y Nanotecnologías del IPN, Ciudad de México C.P. 07738, Mexico
6Departamento Física, Cinvestav-IPN, Ciudad de México C.P. 07360, Mexico

Tóm tắt

The preparation of ultra-thin semi-transparent solar cells with potential applications in windows or transparent roofs entails several challenges due to the very small thickness of the layers involved. In particular, problems related to undesired inter-diffusion or inhomogeneities originated by incomplete coverage of the growing surfaces must be prevented. In this paper, undoped SnO2, CdS, and CdTe thin films with thickness suitable for use in ultra-thin solar cells were deposited with a radiofrequency (RF) magnetron sputtering technique onto conductive glass. Preparation conditions were found for depositing the individual layers with good surface coverage, absence of pin holes and with a relatively small growth rate adapted for the control of very small thickness. After a careful growth calibration procedure, heterostructured solar cells devices were fabricated. The influence of an additional undoped SnO2 buffer layer deposited between the conductive glass and the CdS window was studied. The incorporation of this layer led to an enhancement of both short circuit current and open circuit voltage (by 19 and 32%, respectively) without appreciable changes of other parameters. After the analysis of the cell parameters extracted from the current-voltage (I-V) curves, possible origins of these effects were found to be: Passivation effects of the SnO2/CdS interface, blocking of impurities diffusion or improvement of the band alignment.

Từ khóa


Tài liệu tham khảo

Gessert, 2013, Research strategies toward improving thin-film CdTe photovoltaic devices beyond 20% conversion efficiency, Sol. Energy Mater. Sol. Cells, 119, 149, 10.1016/j.solmat.2013.05.055

(2018, August 15). First Solar Press Release, First Solar Builds the Highest Efficiency Thin Film PV Cell on Record, 5 August 2014. Available online: http://investor.firstsolar.com/news-releases/news-release-details/first-solar-builds-highest-efficiency-thin-film-pv-cell-record.

Gupta, 2004, All-sputtered 14% CdS/CdTe thin-film solar cell with ZnO:Al transparent conducting oxide, Appl. Phys. Lett., 85, 684, 10.1063/1.1775289

Dharmadasa, 2014, Fabrication of CdS/CdTe-Based Thin Film Solar Cells Using an Electrochemical Technique, Coatings, 4, 380, 10.3390/coatings4030380

Plotnikov, V.V., Kwon, D.H., Wieland, K.A., and Compaan, A.D. (2009, January 7–12). 10% Efficiency Solar Cells with 0.5 μm of CdTe. Proceedings of the 34th IEEE Photovoltaic Specialists Conference, Philadelphia, PA, USA.

Bosio, A., Rosa, G., and Romeo, N. (2018). Past, present and future of the thin film CdTe/CdS solar cells. Solar Energy.

Yadav, 2007, Studies on undoped SnO2 thin film deposited by chemical reactive evaporation method, Mater. Sci. Eng. B., 139, 69, 10.1016/j.mseb.2007.01.032

Papadopoulos, 2005, Structural and electrical properties of undoped SnO2 films developed by a low cost CVD technique with two different methods: comparative study, J. Optoelectron Adv. M., 7, 2693

Fuchs, 2011, Photoemission studies on undoped SnO2 buffer layers for CdTe thin film solar cells, Energy Procedia, 10, 149, 10.1016/j.egypro.2011.10.168

(2018, June 13). Sun Well Solar, Semitransparent Solar Cells Type. Available online: http://www.sunwellsolar.com.

Robertson, 1979, Electronic structure of SnO2, GeO2, PbO2, TeO2 and MgF2, J. Phys. C Solid State Phys., 12, 4767, 10.1088/0022-3719/12/22/018

Oliva, 2001, Formation of the band gap energy on CdS thin films growth by two different techniques, Thin Solid Films, 391, 28, 10.1016/S0040-6090(01)00830-6

Lalitha, 2004, Characterization of CdTe thin film-dependence of structural and optical properties on temperature and thickness, Sol. Energy Mater. Sol. Cells, 82, 187, 10.1016/j.solmat.2004.01.017

Vila, 2001, The complete Raman spectrum of nanometric SnO2 particles, J. Appl. Phys., 90, 1550, 10.1063/1.1385573

Hemley, 1986, Raman Spectroscopy of Si02 Glass at High Pressure, Phys. Rev. Lett., 50, 747, 10.1103/PhysRevLett.57.747

Nusimovici, 1967, Lattice dynamics of wurtzite: CdS, Phys. Rev., 156, 925, 10.1103/PhysRev.156.925

Calixto, 2006, CdTe surface roughness by Raman spectroscopy using the 830 nm wavelength, Spectrochim. Acta Part A, 65, 51, 10.1016/j.saa.2005.07.082

Ferekides, C.S., and Morel, D.L. (May 2011). Process Development for High VOC CdTe Solar Cells, National Renewable Energy Lab. (NREL).

Ganguly, 2004, Improved fill factors in amorphous silicon solar cells on zinc oxide by insertion of a germanium layer to block impurity incorporation, Appl. Phys. Lett., 85, 479, 10.1063/1.1773372

Mamaua, R., Balasabramanian, U., Gayam, S., Bapanapalli, S., Nemani, L., Jayabal, M., Zhao, H., Morel, D.L., and Ferekides, C.S. (2005, January 3–7). The Influence of Various Front Contact Materials on the Performance of CdTe Solar Cells. Proceedings of the Conference Record of the Thirty-First IEEE Photovoltaic Specialists Conference, Lake Buena Vista, FL, USA.